4.4 Article

A Mutation in the Mouse Chd2 Chromatin Remodeling Enzyme Results in a Complex Renal Phenotype

Journal

KIDNEY & BLOOD PRESSURE RESEARCH
Volume 31, Issue 6, Pages 421-432

Publisher

KARGER
DOI: 10.1159/000190788

Keywords

Chd2; Chromatin remodeling enzyme; Glomerular disease; Proteinuria; Anemia

Funding

  1. UMMS Diabetes Endocrinology Research Center [DK32520]
  2. NIH
  3. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [P30DK032520] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM056244] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Background and Aims: Glomerular diseases are the third leading cause of kidney failure worldwide, behind only diabetes and hypertension. The molecular mechanisms underlying the cause of glomerular diseases are still largely unknown. The identification and characterization of new molecules associated with glomerular function should provide new insights into understanding the diverse group of glomerular diseases. The Chd2 protein belongs to a family of enzymes involved in ATP-dependent chromatin remodeling, suggesting that it likely functions as an epigenetic regulator of gene expression via the modification of chromatin structure. Methods: In this study, we present a detailed histomorphologic characterization of mice containing a mutation in the chromodomain helicase DNA-binding protein 2 ( Chd2). Results: We show that Chd2-mutant mice present with glomerulopathy, proteinuria, and significantly impaired kidney function. Additionally, serum analysis revealed decreased hemoglobin and hematocrit levels in Chd2-mutant mice, suggesting that the glomerulopathy observed in these mice is associated with anemia. Conclusion: Collectively, the data suggest a role for the Chd2 protein in the maintenance of kidney function. Copyright (C) 2009 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available