4.3 Article

Human trimodal perception follows optimal statistical inference

Journal

JOURNAL OF VISION
Volume 8, Issue 3, Pages -

Publisher

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/8.3.24

Keywords

multisensory integration; cross modal; Bayesian inference; ideal observer; cross-modal illusion; trimodal perception; causal inference

Categories

Ask authors/readers for more resources

Our nervous system typically processes signals from multiple sensory modalities at any given moment and is therefore posed with two important problems: which of the signals are caused by a common event, and how to combine those signals. We investigated human perception in the presence of auditory, visual, and tactile stimulation in a numerosity judgment task. Observers were presented with stimuli in one, two, or three modalities simultaneously and were asked to report their percepts in each modality. The degree of congruency between the modalities varied across trials. For example, a single. ash was paired in some trials with two beeps and two taps. Cross-modal illusions were observed in most conditions in which there was incongruence among the two or three stimuli, revealing robust interactions among the three modalities in all directions. The observers' bimodal and trimodal percepts were remarkably consistent with a Bayes-optimal strategy of combining the evidence in each modality with the prior probability of the events. These findings provide evidence that the combination of sensory information among three modalities follows optimal statistical inference for the entire spectrum of conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available