4.6 Article

A Histidine Switch in Hemagglutinin-Neuraminidase Triggers Paramyxovirus-Cell Membrane Fusion

Journal

JOURNAL OF VIROLOGY
Volume 83, Issue 4, Pages 1727-1741

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.02026-08

Keywords

-

Categories

Funding

  1. Department of Biotechnology, Government of India
  2. Department of Science and Technology, Government of India
  3. Indian Council of Medical Research, Government of India
  4. Delhi University

Ask authors/readers for more resources

Most paramyxovirus fusion proteins require coexpression of and activation by a homotypic attachment protein, hemagglutinin-neuraminidase (HN), to promote membrane fusion. However, the molecular mechanism of the activation remains unknown. We previously showed that the incorporation of a monohistidylated lipid into F-virosome (Sendai viral envelope containing only fusion protein) enhanced its fusion to hepatocytes, suggesting that the histidine residue in the lipid accelerated membrane fusion. Therefore, we explored whether a histidine moiety in HN could similarly direct activation of the fusion protein. In membrane fusion assays, the histidine substitution mutants of HN (H247A of Sendai virus and H245A of human parainfluenza virus 3) had impaired membrane fusion promotion activity without significant changes in other biological activities. Synthetic 30-mer peptides corresponding to regions of the two HN proteins containing these histidine residues rescued the fusion promoting activity of the mutants, whereas peptides with histidine residues substituted by alanine did not. These histidine-containing peptides also activated F-virosome fusion with hepatocytes both in the presence and in the absence of mutant HN in the virosome. We provide evidence that the HN-mimicking peptides promote membrane fusion, revealing a specific histidine switch in HN that triggers fusion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available