4.4 Article

Development of a strand-specific real-time qRT-PCR for the accurate detection and quantitation of West Nile virus RNA

Journal

JOURNAL OF VIROLOGICAL METHODS
Volume 194, Issue 1-2, Pages 146-153

Publisher

ELSEVIER
DOI: 10.1016/j.jviromet.2013.07.050

Keywords

West Nile virus; Strand-specific qRT-PCR; Tagged qRT-PCR; Virus replication kinetics

Funding

  1. European Community [261466]

Ask authors/readers for more resources

Studying the tropism and replication kinetics of West Nile virus (WNV) in different cell types in vitro and in tissues in animal models is important for understanding its pathogenesis. As detection of the negative strand viral RNA is a more reliable indicator of active replication for single-stranded positive-sense RNA viruses, the specificity of qRT-PCR assays currently used for the detection of WNV positive and negative strand RNA was reassessed. It was shown that self-and falsely-primed cDNA was generated during the reverse transcription step in an assay employing unmodified primers and several reverse transcriptases. As a result, a qRT-PCR assay using the thermostable rTth in combination with tagged primers was developed, which greatly improved strand specificity by circumventing the events of self- and false-priming. The reliability of the assay was then addressed in vitro using BV-2 microglia cells as well as In C57/BL6 mice. It was possible to follow the kinetics of positive and negative-strand RNA synthesis both in vitro and in vivo; however, the sensitivity of the assay will need to be optimized in order to detect and quantify negative-strand RNA synthesis in the very early stages of infection. Overall, the strand-specific qRT-PCR assay developed in this study is an effective tool to quantify WNV RNA, reassess viral replication, and study tropism of WNV in the context of WNV pathogenesis. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available