4.7 Article

Time-course of sFlt-1 and VEGF-A release in neutropenic patients with sepsis and septic shock: a prospective study

Journal

JOURNAL OF TRANSLATIONAL MEDICINE
Volume 9, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1479-5876-9-23

Keywords

-

Funding

  1. Fapesp
  2. CNPq, Brazil

Ask authors/readers for more resources

Background: Septic shock is the most feared complication of chemotherapy-induced febrile neutropenia. So far, there are no robust biomarkers that can stratify patients to the risk of sepsis complications. The VEGF-A axis is involved in the control of microvascular permeability and has been involved in the pathogenesis of conditions associated with endothelial barrier disruption such as sepsis. sFlt-1 is a soluble variant of the VEGF-A receptor VEGFR-1 that acts as a decoy receptor down-regulating the effects of VEGF-A. In animal models of sepsis, sFlt-1 was capable to block the barrier-breaking negative effects of VEGF-A and to significantly decrease mortality. In non-neutropenic patients, sFlt-1 has been shown to be a promising biomarker for sepsis severity. Methods: We prospectively evaluated concentrations of sFlt-1 and VEGF-A at different time-points during febrile neutropenia, and evaluated the association of these levels with sepsis severity and septic shock development. Results: Neutropenic patients that evolved with septic shock (n = 10) presented higher levels of sFlt-1 and VEGF-A measured 48 hours after fever onset than patients with non-complicated sepsis (n = 31) and levels of these biomarkers correlated with sepsis severity scores. Estimation of the diagnostic accuracy of sFlt-1 levels for the discrimination of patients that evolved to septic shock yielded promising results in our study population. Discussion: Our data suggest that sFlt-1 and VEGF-A could be useful biomarkers for sepsis severity in patients with febrile neutropenia. In addition, the kinetics of sFlt-1 release in patients that evolve to septic shock suggest that the sFlt-1 could be a salvage compensatory mechanism in patients with septic shock, but that the magnitude of the sFlt-1 release observed in human sepsis is not sufficient to reproduce the beneficial anti-VEGF-A effects observed in animal models of sepsis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available