4.5 Article

Neuronal growth and differentiation on biodegradable membranes

Journal

Publisher

WILEY
DOI: 10.1002/term.1618

Keywords

biodegradable membranes; characterization; neuronal cells; growth; neurites

Funding

  1. King Abdulaziz City for Science and Technology (KACST), Kingdom of Saudi Arabia [KACST-ITM 03]
  2. University of Calabria [2718/201]
  3. Regione Calabria [2718/201]

Ask authors/readers for more resources

Semipermeable polymeric membranes with appropriate morphological, physicochemical and transport properties are relevant to inducing neural regeneration. We developed novel biodegradable membranes to support neuronal differentiation. In particular, we developed chitosan, polycaprolactone and polyurethane flat membranes and a biosynthetic blend between polycaprolactone and polyurethane by phase-inversion techniques. The biodegradable membranes were characterized in order to evaluate their morphological, physicochemical, mechanical and degradation properties. We investigated the efficacy of these different membranes to promote the adhesion and differentiation of neuronal cells. We employed as model cell system the human neuroblastoma cell line SHSY5Y, which is a well-established system for studying neuronal differentiation. The investigation of viability and specific neuronal marker expression allowed assessment that the correct neuronal differentiation and the formation of neuronal network had taken place in vitro in the cells seeded on different biodegradable membranes. Overall, this study provides evidence that neural cell responses depend on the nature of the biodegradable polymer used to form the membranes, as well as on the dissolution, hydrophilic and, above all, mechanical membrane properties. PCL-PU membranes exhibit mechanical properties that improve neurite outgrowth and the expression of specific neuronal markers. Copyright (c) 2012 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available