4.7 Article

Crystallization kinetics of polyethylene/paraffin oil blend sheets formed by thermally induced phase separation with different molecular weights of polyethylene

Journal

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
Volume 118, Issue 3, Pages 1649-1661

Publisher

SPRINGER
DOI: 10.1007/s10973-014-4028-4

Keywords

Crystallization kinetics; Polyethylene; Paraffin oil

Ask authors/readers for more resources

Polyethylene/paraffin oil blend sheets with different molecular weights of polyethylene were prepared by thermally induced phase separation. Isothermal and non-isothermal crystallization behaviors of blend sheets were investigated by differential scanning calorimetry (DSC). Isothermal DSC curves were analyzed by Avrami equation, whereas non-isothermal DSC curves were analyzed by Jeziorny method and Mo method. Effective activation energy (Delta E) of isothermal and non-isothermal crystallization was calculated by Friedman method. Under isothermal condition, value of n in Avrami equation hovered at 2.1, and lgZ increased with the decrease of crystallization temperature. lgZ and Delta E of blend sheets with a larger molecular weight of polyethylene was smaller than that of blend sheets with smaller molecular weight. Under non-isothermal condition, value of n obtained by Jeziorny method hovered at 2.4, close to n of isothermal condition. lgZ (c) increased with the increase of cooling rate and decrease of molecular weight of polyethylene. Delta E of different blend sheets were close to each other. Crystal structures of blend sheets formed under non-isothermal condition were analyzed by X-ray diffraction (XRD) analysis. XRD analysis showed that molecular weight of polyethylene and cooling rate had slight influence on crystal structure and crystallinity of polyethylene/paraffin oil blend sheet.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available