4.4 Article

The strength of species interactions modifies population responses to environrnental variation in competitive communities

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 310, Issue -, Pages 199-205

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2012.06.035

Keywords

Autocorrelation; Competition; Density dependence; Environmental correlation; Stability

Funding

  1. Academy of Finland
  2. Swedish Research Council

Ask authors/readers for more resources

The life-history parameters of most living organisms are modified by fluctuations in environmental conditions. The impact of environmental autocorrelation on population persistence is well understood in single species systems. However, in multi-species communities the impact of stochasticity is complicated by the possibility of different species having differing intrinsic responses to the environment (environmental correlation). Previous work has shown that whether increasing between-species environmental correlation stabilises population fluctuations or not, depends on an interaction between density-dependence and environmental autocorrelation. Here we derive analytical conditions for how this interaction in turn depends on the strength of interspecific competition. Under relatively weak between-species interactions, increasing environmental autocorrelation always dampens population fluctuations, while increasing autocorrelation destabilises strongly interacting populations. In contrast, under intermediate interaction strengths, increasing autocorrelation destabilises (stabilises) population dynamics when populations respond independently (similarly) to environmental fluctuations. These results apply to a wide range of competitive communities and also have some relevance to consumer-resource systems. The results presented here help us better understand population responses to environmental fluctuations under different conditions. (c) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available