4.4 Article

Modeling the spontaneous activity in suprachiasmatic nucleus neurons: Role of cation single channels

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 265, Issue 2, Pages 115-125

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2010.03.039

Keywords

Circadian clock; Coefficient of variability; Interspike interval; Multielectrode array dish

Ask authors/readers for more resources

A population of interconnected neurons of the mammalian suprachiasmatic nuclei (SCN) controls circadian rhythms in physiological functions. In turn, a circadian rhythm of individual neurons is driven by intracellular processes, which via activation of specific membrane channels, produce circadian modulation of electrical firing rate. Yet the membrane target(s) of the cellular clock have remained enigmatic. Previously, subthreshold voltage-dependent cation (SVC) channels have been proposed as the membrane target of the cellular clock responsible for circadian modulation of the firing rate in SCN neurons. We tested this hypothesis with computational modeling based on experimental results from on-cell recording of SVC channel openings in acutely isolated SCN neurons and long-term continuous recording of activity from dispersed SCN neurons in a multielectrode array dish (MED). The model reproduced the circadian behavior if the number of SVC channels or their kinetics were modulated in accordance with protein concentration in a model of the intracellular clock (Scheper et al., 1999. J. Neurosci. 19, 40-47). Such modulation changed the average firing rate of the model neuron from zero (subjective-night silence) up to 18 Hz (subjective-day peak). Furthermore, the variability of interspike intervals (ISI) and the circadian pattern of firing rate (i.e. silence-to-activity ratio and shape of circadian peaks) are in reasonable agreement with experimental data obtained in dispersed SCN neurons in MED. These results suggest that the variability of ISI in intact SCN neurons is mostly due to stochastic single-channel openings, and that the circadian pattern of the firing rate is specified by threshold properties of dependence of the spontaneous firing rate on the number of single channels (R-N relationship). This plausible mathematical modeling supports the hypothesis that SVC channels could be a critical element in circadian modulation of firing rate in SCN neurons. (c) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available