4.7 Article

Effect of duck egg white peptide-ferrous chelate on iron bioavailability in vivo and structure characterization

Journal

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE
Volume 99, Issue 4, Pages 1834-1841

Publisher

WILEY
DOI: 10.1002/jsfa.9377

Keywords

duck egg white peptides-ferrous chelate (DPs-Fe); characterization; anemia; iron-regulated genes; hemoglobin

Ask authors/readers for more resources

BACKGROUND In order to utilize the industrial by-product 'salted duck egg white' as novel iron additives, the effects of desalted duck egg white peptides-ferrous chelate (DPs-Fe) on the promotion of iron uptake and the structure were investigated. RESULTS Different doses of DPs-Fe were given and iron sulfate (FeSO4) was used as a positive control. After three weeks, hemoglobin (Hb), hematocrit (HCT), red blood cells (RBCs), mean corpuscular volume (MCV), serum iron (SI) and serum ferritin (SF) in iron-deficiency anemia (IDA) rats could be significantly (P < 0.05) increased to the normal levels by DPs-Fe. The gene expressions of divalent metal transporter 1 (DMT1), ferroportin 1 (FPN1) and Hepcidin could be regulated by DPs-Fe. Additionally, DPs-Fe was formed during the chelation process and the structure was characterized. Eight crucial iron-chelating peptides of duck egg white peptides (DPs) were identified by HPLC-ESI-MS/MS, such as Pro-Val-Glu-Glu and Arg-Ser-Ser. It indicated that Glu, Asp, Lys, His, Ser, Cys residues might play crucial roles in the chelating of DPs with iron. CONCLUSION DPs-Fe could be a potential iron supplement, and the Glu, Asp, Lys, His played important roles in binding iron and promoting iron uptake. This research expands the understanding of iron uptake by DPs and provides an opportunity for recycling a discarded processing byproduct. (c) 2018 Society of Chemical Industry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available