4.6 Article

Unlocking the secrets of multi-flagellated propulsion: drawing insights from Tritrichomonas foetus

Journal

JOURNAL OF THE ROYAL SOCIETY INTERFACE
Volume 11, Issue 93, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsif.2013.1149

Keywords

cell motility; cytoskeleton; microfluidics; micropropulsion

Funding

  1. Office of Naval Research [ONR-N00014-11-1-0622, ONR-N00014-13-1-0667]
  2. Programme for Excellence and Equity in Research, National Institutes of Health

Ask authors/readers for more resources

In this work, a high-speed imaging platform and a resistive force theory (RFT) based model were applied to investigate multi-flagellated propulsion, using Tritrichomonas foetus as an example. We discovered that T. foetus has distinct flagellar beating motions for linear swimming and turning, similar to the 'run and tumble' strategies observed in bacteria and Chlamydomonas. Quantitative analysis of the motion of each flagellum was achieved by determining the average flagella beat motion for both linear swimming and turning, and using the velocity of the flagella as inputs into the RFT model. The experimental approach was used to calculate the curvature along the length of the flagella throughout each stroke. It was found that the curvatures of the anterior flagella do not decrease monotonically along their lengths, confirming the ciliary waveform of these flagella. Further, the stiffness of the flagella was experimentally measured using nanoindentation, allowing for calculation of the flexural rigidity of T. foetus's flagella, 1.55 x 10(-21) N m(2). Finally, using the RFT model, it was discovered that the propulsive force of T. foetus was similar to that of sperm and Chlamydomonas, indicating that multi-flagellated propulsion does not necessarily contribute to greater thrust generation, and may have evolved for greater manoeuvrability or sensing. The results from this study have demonstrated the highly coordinated nature of multi-flagellated propulsion and have provided significant insights into the biology of T. foetus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available