4.7 Article

Characterization and CFD-DEM modelling of a prismatic spouted bed

Journal

POWDER TECHNOLOGY
Volume 270, Issue -, Pages 622-636

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.powtec.2014.05.026

Keywords

Spouted bed; Discrete Element Method; Computational Fluid Dynamics; Fluidization; Particle dynamics; Kolmogorov entropy

Funding

  1. German Research Foundation [HE 4526/5-1]
  2. Technology Foundation STW, The Netherlands [11053]

Ask authors/readers for more resources

In this study a prismatic spouted bed was characterized experimentally and modelled by means of 3D CFD-DEM simulations. The main focus was on the investigation of the influence of the gas flow rate on the bed dynamics and spouting stability. Pressure drop time series obtained at different gas velocities were used for the identification of flow regimes by means of the frequency domain and of chaotic properties such as the correlation dimension and Kolmogorov entropy. The gas and particle dynamics were investigated through simulations of different operational regimes: the spouting onset, as well as stable and instable regimes. A 3-D bed behaviour, typical for slot-rectangular beds, was found. A good agreement between simulations and experiments in the particle flow patterns, bed expansion and dynamics of characteristic gas pressure fluctuations was achieved. The particle dynamics as a function of the gas velocity was investigated for the entire bed. For one of the stable regimes, the bed regions showing different particle dynamics (spout, fountain and annulus) were characterized in detail. A regime map showing the stable operational window in dependence on an inlet-to-bed size ratio and gas velocity is also provided. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available