3.9 Article

Evolutionary relationships of atyid shrimps imply both ancient Caribbean radiations and common marine dispersals

Journal

Publisher

NORTH AMER BENTHOLOGICAL SOC
DOI: 10.1899/07-044R.1

Keywords

biogeography; Caribbean; phylogenetics; evolutionary radiation; Neotropics; islands; dispersal; vicariance; amphidromy; Atyidae

Ask authors/readers for more resources

The evolutionary relationships of the surface genera of shrimps of the family Atyidae from the Caribbean were inferred using mitochondrial 16S ribosomal DNA and cytochrome oxidase I gene sequences. The genetic divergence among the 4 Caribbean genera (Atya, Jonga, Micratya, Potimirim) is extensive and dates from between the Eocene and Miocene. This result suggests a vicariant origin or the ancient dispersal of some taxa. Most intrageneric divergences date to the late Miocene-Pliocene and, thus, are probably the result of dispersal. Some species show low levels of intraspecific genetic divergence between distant islands, and thus, present-day or geologically recent gene flow is likely. This gene flow is probably a consequence of the amphidromous life histories of most Caribbean freshwater shrimps. Despite the ancient divergences between the genera, the Caribbean surface atyids form a single evolutionary lineage when compared with atyid shrimp from throughout the world, and this result implies an ancient evolutionary radiation in the Caribbean. The sister group to the Caribbean atyids are the large-bodied and robust Atya-like shrimps of the Indo-Pacific, which share a similar size and shape with Caribbean Atya. Thus, the common ancestor probably was also large and robust. In contrast, the other Caribbean atyids are much smaller, and Jonga has a distinct morphology that is associated with a switch from lotic to lentic environments. This radiation may have been the result of the absence from the Caribbean of other small shrimps that are common in the Indo-Pacific.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available