4.5 Article

Pleiotropic neuroprotective and metabolic effects of Actovegin's mode of action

Journal

JOURNAL OF THE NEUROLOGICAL SCIENCES
Volume 322, Issue 1-2, Pages 222-227

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jns.2012.07.069

Keywords

Actovegin; Metabolic effects; Mode of action; Neuroprotection; Apoptosis; Oxidative stress

Funding

  1. Takeda Pharmaceuticals International GmbH, Zurich, Switzerland

Ask authors/readers for more resources

This article reviews the mechanisms of action of Actovegin in the context of its preclinical effects and new concepts in the pharmacological treatment of neurological disorders. Actovegin is an ultrafiltrate of calf blood, composed of more than 200 biological substances. The drug is used for a broad spectrum of diseases, including disturbances of peripheral and cerebral blood circulation, burns, impaired wound healing, radiation-induced damage and diabetic polyneuropathy. Actovegin is composed of small molecules present under normal physiological conditions, therefore pharrnacokinetic and pharmacodynamic studies to determine its active substance are not feasible. Preclinical data have revealed that it improves metabolic balance by increasing glucose uptake and improving oxygen uptake under conditions of ischemia. Actovegin also resists the effects of gamma-irradiation and stimulates wound healing. More recent preclinical studies have suggested that anti-oxidative and anti-apoptotic mechanisms of action specifically underlie the neuroprotective properties of Actovegin. The drug has been found to exert these beneficial effects experimentally, in primary rat hippocampal neurons and in an STZ-rat model of diabetic polyneuropathy, while also providing evidence that it positively affects the functional recovery of neurons. Latest data suggest that Actovegin also has a positive influence on the NF-kappa B pathway, but many molecular and cellular pathways remain unexplored. In particular, Actovegin's influence on neuroplasticity, neurogenesis and neurotrophicity are questions that ideally should be answered by future research. Nevertheless, it is clear that the multifactorial and complex nature of Actovegin underlies its pleiotropic neuroprotective mechanisms of action and positive effect on clinical outcomes. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available