4.7 Article

A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior

Journal

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
Volume 121, Issue -, Pages 23-46

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2018.07.016

Keywords

Chiral lattice; Micropolar elasticity; Homogenization method; Tension-twist coupling; Size effect

Funding

  1. National Natural Science Foundation of China [11602004, 11602081]
  2. Foundation for Innovative Research Groups of the National Natural Science Foundation of China [11521202]
  3. Project of Beijing Municipal Science & Technology Commission [Z161100001416007]
  4. Graduate Technological Innovation Project of Beijing Institute of Technology [2018CX20011]

Ask authors/readers for more resources

This work extends the micropolar theory for the constitutive behaviors of three-dimensional (3D) cubic chiral lattice. A novel 3D chiral lattice is proposed by introducing noncentrosymmetry into microstructure design of artificial materials. The independent micropolar elastic constants of the proposed 3D chiral lattice are deduced and divided into the isotropic and anisotropic types with orthogonal irreducible decomposition of tensor. A homogenization method for the proposed 3D chiral lattice is developed to solve mathematical relations between the elastic constants and structure parameters of the chiral lattice which are admitted by finite element (FE) analysis. Two representative numerical examples are analyzed with the FE model and the continuum model where the size effect and tension-twist coupling behavior of the proposed 3D cubic chiral lattice are accurately predicted. This work establishes a fundamental link between the macroscopic mechanical properties and microstructure of the chiral material, and provides a new channel for 3D chiral microstructure design. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Mechanics

Deformation and failure modes of aluminum foam-cored sandwich plates under air-blast loading

Ying Li, Xianben Ren, Xiaoqiang Zhang, Yanfei Chen, Tian Zhao, Daining Fang

Summary: The study investigated the deformation and failure modes of aluminum foam-cored sandwich plates through air-blast experiments and finite element modeling, revealing different failure modes and internal stress distributions under various impacts. The research provided a theoretical basis for engineering design by establishing mathematical models to verify the findings.

COMPOSITE STRUCTURES (2021)

Article Mechanics

Two-scale damage failure analysis of 3D braided composites considering pore defects

Lei Ge, Huimin Li, Huayong Zheng, Chun Zhang, Daining Fang

Summary: A two-scale progressive damage method coupled with representative volume cell (RVC) has been developed to predict the mechanical properties of 3D braided composites considering pore defects. Results show that the void-model is superior to the element-model when predicting the mechanical properties of braided composites.

COMPOSITE STRUCTURES (2021)

Article Materials Science, Composites

From microscale to mesoscale: The non-linear behavior prediction of 3D braided composites based on the SCA2 concurrent multiscale simulation

Chunwang He, Jingran Ge, Jiaying Gao, Jiapeng Liu, Haosen Chen, Wing Kam Liu, Daining Fang

Summary: Concurrent multiscale simulation is a powerful tool for capturing the mechanical behavior of composites from different scales simultaneously, but faces challenges due to computational costs. This paper introduces an effective reduced order model called data-driven self-consistent clustering analysis (SCA) to address the challenge. The proposed SCA2 framework successfully captures the non-linear behavior of 3D braided composites and shows great accuracy and efficiency when applied to simulations validated with experiments.

COMPOSITES SCIENCE AND TECHNOLOGY (2021)

Article Materials Science, Composites

Micro-CT based trans-scale damage analysis of 3D braided composites with pore defects

Lei Ge, Huimin Li, Jiehua Zhong, Chun Zhang, Daining Fang

Summary: Researchers have developed a trans-scale method coupled with Micro-CT to investigate the strength and damage behavior of 3D braided composites with pore defects. The finite element models established on Micro-CT data accurately predict the stress-strain response and failure modes of the composites. The study also shows the diverse influences of interface properties on yarns and braided composites under different loading conditions.

COMPOSITES SCIENCE AND TECHNOLOGY (2021)

Article Materials Science, Multidisciplinary

Interlaminar Fracture Toughness Measurement of Multilayered 2D Thermoelectric Materials Bi2Te3 by a Tapered Cantilever Bending Experiment

P. Wang, K. F. Wang, B. L. Wang, L. Xi, K. Sano, T. Shimada, H. Hirakata, D. N. Fang

Summary: This study aims to stably and accurately measure the interlaminar fracture toughness (IFT) of multilayered Bi2Te3 for evaluating the reliability of its thermoelectric devices. By developing a tapered cantilever bending (TCB) experiment, the measurement of IFT for Bi2Te3 was successfully achieved, providing a new method for assessing multilayered materials.

EXPERIMENTAL MECHANICS (2022)

Article Materials Science, Composites

Effects of Void Defects on Fracture Features and Tensile Strength of C/SiC Composites: an Image-based FEM Study

Qiubo Li, Yihui Chen, Yanfei Chen, Shigang Ai, Daining Fang

Summary: This study aims to investigate the effect of void defects on the failure behavior and strength of C/SiC composites. Micro-computed tomography and finite element models were used to study the influence of void volume fractions and geometry on the materials. This research is important for better understanding the impact of defects on the mechanical behavior of composite materials.

APPLIED COMPOSITE MATERIALS (2022)

Article Engineering, Multidisciplinary

An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics

Tianhao Liu, Fanglin Huang, Weibin Wen, Shanyao Deng, Shengyu Duan, Daining Fang

Summary: An improved explicit time integration method using cubic B-spline interpolation approximation and weighted residual method is proposed, which achieves high computation accuracy and stability.

APPLIED MATHEMATICAL MODELLING (2021)

Article Mechanics

Bio-inspired 3D printing of self-growing multinetwork elastomer composites

Dong Wu, Zeang Zhao, Hongshuai Lei, Hao-Sen Chen, Qiang Zhang, Panding Wang, Daining Fang

Summary: Natural tissues can self-strengthen through biological growth, while synthetic materials are typically static. The concept of bio-inspired materials aims to develop materials with dynamically programmable performances. A solvent-free elastomer composite system is proposed in this study, which can be strengthened through tunable self-growth cycles and is compatible with Digital Light Processing (DLP) 3D printing for fast manufacturing of high-precision structures.

COMPOSITE STRUCTURES (2022)

Article Materials Science, Composites

The effects of fiber radius and fiber shape deviations and of matrix void content on the strengths and failure mechanisms of UD composites by computational micromechanics

Chunwang He, Jingran Ge, Xiaofei Cao, Yanfei Chen, Haosen Chen, Daining Fang

Summary: Manufacturing uncertainties in composites, such as carbon fiber deviations and voids, can impact mechanical properties. Although experiments have been conducted, quantitative characterization of fiber radius and shape deviations, and matrix void content, remain a challenge. A computational micromechanics study was conducted to understand the effects of manufacturing uncertainties on the mechanical behavior of UD composites under different loading conditions. The methodology involved establishing constitutive laws for constituents, modeling RVEs with deviations based on observations, and predicting stress-strain curves and failure modes.

COMPOSITES SCIENCE AND TECHNOLOGY (2022)

Article Mechanics

An improved quartic B-spline based explicit time integration algorithm for structural dynamics

Weibin Wen, Shanyao Deng, Tianhao Liu, Shengyu Duan, Fanglin Huang

Summary: The study presented an improved explicit time integration method based on quartic B-spline interpolation for linear and nonlinear dynamics, achieving high accuracy with the ability to adjust numerical dissipation and precision. Results demonstrated its effectiveness in linear and nonlinear dynamic problems, providing stable and accurate solutions compared to classical explicit methods.

EUROPEAN JOURNAL OF MECHANICS A-SOLIDS (2022)

Article Materials Science, Ceramics

A physically based thermo-elastoplastic constitutive model for braided CMCs-SiC at ultra-high temperature

Yanfei Chen, Shigang Ai, Pan Wang, Daining Fang

Summary: A physically based constitutive model for braided silicon carbide ceramic matrix composites (CMCs-SiC) at ultra-high temperature is developed, considering material orthotropy, temperature effect, tension-compression asymmetry, and crack closure effect. The model, implemented using a return mapping algorithm, shows good agreement with experimental data in predicting stress-strain relationships at different stress states and temperatures.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2022)

Article Engineering, Multidisciplinary

Performance of a Three-Substep Time Integration Method on Structural Nonlinear Seismic Analysis

Jinyue Zhang, Lei Shi, Tianhao Liu, De Zhou, Weibin Wen

Summary: This work examines the application of the Wen method, a three substeps' implicit time integration method, in nonlinear finite element analysis. The analysis shows that the Wen method performs well in numerical dissipation, amplitude decay, and period elongation. Theoretical analysis and numerical simulations suggest that the Wen method is accurate and efficient for solving nonlinear dynamic problems.

MATHEMATICAL PROBLEMS IN ENGINEERING (2021)

Review Chemistry, Multidisciplinary

Recent Progress in Active Mechanical Metamaterials and Construction Principles

Jixiang Qi, Zihao Chen, Peng Jiang, Wenxia Hu, Yonghuan Wang, Zeang Zhao, Xiaofei Cao, Shushan Zhang, Ran Tao, Ying Li, Daining Fang

Summary: Active mechanical metamaterials combine mechanical metamaterials with smart materials for superior performance, with structures designed based on principles such as phase transition and strain mismatch. External stimuli like temperature, chemicals, and light are used for control and efficiency.

ADVANCED SCIENCE (2022)

Article Computer Science, Interdisciplinary Applications

A time-marching procedure based on a sub-step explicit time integration scheme for non-viscous damping systems

Tianhao Liu, Weibin Wen, Pan Wang, Fan Feng

Summary: This study proposes an improved time-marching procedure based on a composite explicit method for non-viscous damping systems. The method introduces an improved integral approximation scheme to enhance the convolution solution accuracy, which is applicable to any causal kernel function. The mathematical derivation and calculation procedure based on the composite explicit method are formulated for non-viscous damping systems. Numerical simulations of representative examples demonstrate that the adopted composite explicit method exhibits better stability and accuracy properties compared to other explicit methods.

ENGINEERING WITH COMPUTERS (2023)

Article Multidisciplinary Sciences

A 4D x-ray computer microtomography for high-temperature electrochemistry

Handong Jiao, Zhaoliang Qu, Shuqiang Jiao, Yang Gao, Shijie Li, Wei-Li Song, Haosen Chen, Hongmin Zhu, Rongqi Zhu, Daining Fang

Summary: High-temperature electrochemistry is widely used but real-time observations and in-depth understanding of its evolution are limited. In this study, a high-temperature electrolysis facility with in situ x-ray computer microtomography was developed to probe the dynamic evolution of electrodes. The results provide insights into the efficiency and mechanisms of the process, as well as real-time optimization.

SCIENCE ADVANCES (2022)

Article Materials Science, Multidisciplinary

Non-Hermitian wave dynamics of odd plates: Microstructure design and theoretical modelling

Yanzheng Wang, Qian Wu, Yiran Tian, Guoliang Huang

Summary: This paper proposes the microstructure design of an odd plate and investigates the directional wave energy amplification and the presence of interface waves in odd plates through theoretical and numerical analysis. The research findings contribute to the understanding of elastic behavior in 2D non-Hermitian systems.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Topology optimization of flexoelectric metamaterials with apparent piezoelectricity

F. Greco, D. Codony, H. Mohammadi, S. Fernandez-Mendez, I. Arias

Summary: This study overcomes the difficulty of harnessing the flexoelectric effect by designing multiscale metamaterials. Through topology optimization calculations, we obtain optimal structures for various apparent piezoelectric properties and find that low-area-fraction lattices are the preferred choice. The results show competitive estimations of apparent piezoelectricity compared to reference materials such as quartz and PZT ceramics.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

A treatment of particle-electrolyte sharp interface fracture in solid-state batteries with multi-field discontinuities

Xiaoxuan Zhang, Tryaksh Gupta, Zhenlin Wang, Amalie Trewartha, Abraham Anapolsky, Krishna Garikipati

Summary: This study presents a computational framework for coupled electro-chemo-(nonlinear) mechanics at the particle scale in solid-state batteries, including interfacial fracture, degradation in charge transfer, and stress-dependent kinetics. The discontinuous finite element method allows for arbitrary particle shapes and geometries.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Coexistence of five domains at single propagating interface in single-crystal Ni-Mn-Ga shape memory alloy

Chengguan Zhang, Xavier Balandraud, Yongjun He

Summary: The coexistence of both austenite and martensite is a common characteristic in Shape Memory Alloys (SMAs). The multiple-domain microstructures, consisting of austenite, martensite twins, and individual martensite variants, evolve collectively during the phase transformation, affecting the material's macroscopic response. This paper presents an experimentally observed interface consisting of five domains in a Ni-Mn-Ga single-crystal, and analyzes the effects of thermal loading path and material initial state on the domain pattern formation.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

A snap-through instability of cell adhesion under perturbations in hydrostatic pressure

Shaobao Liu, Haiqian Yang, Guang-Kui Xu, Jingbo Wu, Ru Tao, Meng Wang, Rongyan He, Yulong Han, Guy M. Genin, Tian Jian Lu, Feng Xu

Summary: The balance between stress and adhesion plays a crucial role in governing the behaviors of adherent cells, such as cell migration. In certain microenvironments, such as tumor, variations in hydrostatic pressure can significantly impact cell volume and adhesion, which in turn affects cell behavior.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Pinning cracks by microstructure design in brittle materials

Xun Xiong, Qinglei Zeng, Yonghuan Wang, Ying Li

Summary: In this work, the authors investigate the possibility of enhancing the resistance to crack growth in brittle materials through microstructure design. They establish a computational framework to simulate crack propagation and characterize fracture energy. The effects of different types of voids on toughening mechanisms are explored, and the critical conditions for embrittlement-toughening transition are identified. The study also discusses the difference between void toughening in brittle and ductile materials, and extends the toughening strategy to nacre-like materials.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Dynamic high-order buckling and spontaneous recovery of active epithelial tissues

Huan Wang, Yong-Quan Liu, Jiu-Tao Hang, Guang-Kui Xu, Xi-Qiao Feng

Summary: This study establishes a cytoarchitectural model to accurately capture the buckling and postbuckling behaviors of epithelia under fast compression. The stress evolution of epithelia is divided into three stages: loading, phase transition, and stress recovery. The postbuckling process is governed by the active tension generated by the actomyosin network. The study also proposes a minimal model that predicts the flattening time and stress recovery extent as functions of applied strain or strain rate, in agreement with simulations and experiments.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Mechanics and topology of twisted hyperelastic filaments under prescribed elongations: Experiment, theory, and simulation

Lei Liu, Hao Liu, Yuming He, Dabiao Liu

Summary: This study investigates the mechanics and topologically complex morphologies of twisted rubber filaments using a combination of experiment and finite strain theory. A finite strain theory for hyperelastic filaments under combined tension, bending, and torsion has been established, and an experimental and theoretical morphological phase diagram has been constructed. The results accurately determine the configuration and critical points of phase transitions, and the theoretical predictions agree closely with the measurements.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Frictional slip wave solutions for dynamic sliding between a layer and a half-space

Abhishek Painuly, Kunnath Ranjith, Avinash Gupta

Summary: This paper analyzes the interfacial waves caused by frictional slipping and studies their dispersion relation and wave modes. By studying the slip waves in a geophysical model, the surface wave dispersion phenomenon is explored, and an alternative explanation is proposed.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Asymptotically matched extrapolation of fishnet failure probability to continuum scale

Houlin Xu, Joshua Vievering, Hoang T. Nguyen, Yupeng Zhang, Jia-Liang Le, Zdenek P. Bazant

Summary: Motivated by the extraordinary strength of nacre, this study investigated the probabilistic distribution of fishnet strength using Monte Carlo simulations and found that previous analytical solutions are not applicable for fishnets with a large number of links. By approximating large-scale fishnets as a continuum with cracks or holes, the study revealed that the strength distribution follows the Weibull distribution. This new model has significance for optimizing the strength-weight ratio in printed material structures.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Nonlinear anisotropic viscoelasticity

Souhayl Sadik, Arash Yavari

Summary: This paper revisits the mathematical foundations of nonlinear viscoelasticity and studies the geometry of viscoelastic deformations. It discusses the decomposition of the deformation gradient into elastic and viscous distortions and concludes that the viscous distortion can only be a two-point tensor. The governing equations of nonlinear viscoelasticity are derived and the constitutive and kinetic equations for various types of viscoelastic solids are discussed.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Elastic energy and polarization transport through spatial modulation

Wen Cheng, Hongkuan Zhang, Yu Wei, Kun Wang, Gengkai Hu

Summary: In this study, we propose a phenomenon similar to Thouless pumping for a continuous in-plane elastic system, enabling topological transport of elastic waves through spatial modulation of material elasticity. By incorporating specific lattice microstructures, termed pentamode materials, precise and robust control over elastic wave propagation is achieved.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

A simple quantitative model of neuromodulation, Part I: Ion flow neural ion channels

Linda Werneck, Mertcan Han, Erdost Yildiz, Marc-Andre Keip, Metin Sitti, Michael Ortiz

Summary: We have developed a simple model that describes the ionic current through neuronal membranes by considering the membrane potential and extracellular ion concentration. The model combines a simplified Poisson-Nernst-Planck model of ion transport through individual ion channels with channel activation functions calibrated from experimental data. The calibrated model accounts for the transport of calcium, sodium, potassium, and chloride and shows remarkable agreement with experimentally measured current-voltage curves for human neural cells.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)