4.6 Article

Influence of physical and mechanical properties of amphiphilic biosynthetic hydrogels on long-term cell viability

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jmbbm.2014.03.010

Keywords

Biosynthetic hydrogels; Mechanical properties; Long term viability; Amphiphilicity; Cross linking density

Ask authors/readers for more resources

Maintaining the mechanical properties of biofunctional hydrogels of natural resources for tissue engineering and biomedical applications for an intended period of duration is a challenge. Though anionic polysaccharide alginate has been hailed for its excellent biomimetic characters for tissue engineering, it usually fails in load bearing and other dynamic mechanical environment. In this paper this issue was addressed by copolymerizing alginate with the biocompatible and mechanically robust synthetic biodegradable polyester and crosslinking with polyethylene glycol diacrylate (PEGDA) and vinyl comonomers, 2-hydroxy ethyl methacrylate (HEMA), methyl methacrylate (MMA) and N N' methylene bis acrylamide (NMBA) to form three hydrogels. All three hydrogels were amphiphilic, hemocompatible and non-cytotoxic. These hydrogels exhibited appreciable water holding capacity. Comparatively, hydrogel prepared with PEGDA-NMBA crosslinkers displayed larger pore size, increased crosslinking, higher tensile strength and controlled degradation. With appreciable swelling and EWC, this hydrogel elicited better biological responses with long-term cell viability for cardiac tissue engineering. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available