4.0 Article

Influence of Flow Velocity on Conservative Solute Transport in Sets of Parallel Fractures with Fracture Skin

Journal

JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA
Volume 80, Issue 4, Pages 524-530

Publisher

SPRINGER INDIA
DOI: 10.1007/s12594-012-0172-2

Keywords

Conservative solute transport; Fracture skin; Flow velocity; Numerical model

Ask authors/readers for more resources

Analysis of contaminant transport through fractured crystalline rocks has received considerable attention, particularly with regard to subsurface nuclear waste repositories. Most of the studies have employed the dual continuum approach, with the fractures and the rock matrix as the two continuums, assuming that fractures control the overall conductivity of the rock and the porous matrix just provides storage. However, field observations of rock fractures have shown that the real situation can be very complex. Based on some recent investigations, it has been reported that the portion of the rock matrix adjacent to many open fractures is physically and chemically altered. These alterations, referred to as the fracture skin, can have different sorption and diffusion properties compared to those of the undisturbed rock matrix and this may influence the transport of solutes through such formations. In the present study, a numerical model is developed to simulate conservative solute transport in a fractured crystalline rock formation using the triple continuum approach - with the fracture, fracture skin and the rock matrix as the three continuums. The model is solved using a fully implicit finite difference scheme. Contaminant migration in the fractured formation with and without skin has been simulated. It is observed that contaminant penetration along the fracture is enhanced at large flow velocities. The effect of flow velocity on conservative solute transport is investigated for different fracture apertures and fracture skin thicknesses. The influence of flow velocity on contaminant transport is demonstrated to be more with change in fracture aperture than with change in skin thickness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available