4.7 Article

Effects of Injection Molding Conditions on the Electrical Properties of Polycarbonate/Carbon Nanotube Nanocomposites

Journal

POLYMER COMPOSITES
Volume 37, Issue 11, Pages 3245-3255

Publisher

WILEY-BLACKWELL
DOI: 10.1002/pc.23523

Keywords

-

Ask authors/readers for more resources

Polycarbonate/Carbon nanotube (PC/CNT) nanocomposites containing various CNT contents (0-5 wt%) were prepared by injection molding. The effects of CNT contents, injection speed (V) and injection temperature (T) on the electrical resistivity of the PC/CNT nanocomposites were investigated. It was found that the tensile strength of nanocomposites was enhanced slightly with increased CNT contents, and the tensile modulus was 29% greater after the 5 wt% CNT addition, but the brittle tendency became stronger. Aside from tensile properties, the electrical resistivity of the nanocomposites dropped 12 orders of magnitude after the 5 wt% CNT addition. Also, there was a tendency that the electrical resistivity was lower in the case of higher injection temperature and lower injection speed. Scanning electron microscope (SEM) images and the distribution of surface layer electrical resistivity, clearly showed a notable influence by surface layer microstructures on the electrical resistivity, and the injection conditions affected both the value of the maximum electrical resistivity and the position where it occurred. This study offers an alternative green and simple molding process to prepare conductive PC nanocomposites and to achieve the industrialization of PC/CNT nanocomposite products which can be used in electromagnetic shielding and anti-static fields. (C) 2015 Society of Plastics Engineers

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available