4.6 Article

Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 161, Issue 14, Pages F1481-F1488

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0921414jes

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office [ZGB-0-4-647-1]

Ask authors/readers for more resources

The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1-C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resulting in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities. (C) The Author(s) 2014. Published by ECS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available