4.4 Article

Constant Boundary Elements on Graphics Hardware: a GPU-CPU Complementary Implementation

Publisher

SPRINGER HEIDELBERG
DOI: 10.1590/S1678-58782011000400011

Keywords

boundary element method; graphics hardware; high-performance computing; GPU-CPU systems

Ask authors/readers for more resources

Numerical simulation of engineering problems has reached such a large scale that the use of a parallel computing approach is required to obtain solutions within a reasonable time. Recent efforts have been made to implement these large scale computational tasks on general-purpose programmable graphics hardware (GPGPU). The Graphics Processing Unit (GPU) is specially well-suited to address problems that can be formulated in form of data-parallel computations with high arithmetic intensity. This work addresses the implementation of the direct version of the Boundary Element Method (DBEM) on a complementary GPU-CPU system. In this article, constant elements were used for the solution of 2D potential problems. A serial implementation of the BEM was rewritten under the SIMT (Single Instruction Multiple Thread) parallel programming paradigm. The code was developed on an NVidia (TM) CUDA programming environment. The efficiency of the implemented strategies is investigated by solving a representative 2D potential problem. The paper reviews in detail the classical BEM formulation in order to be able to address the possible parallelization steps in the numerical implementation. The article reports the performance of the GPU-CPU system compared to the classical CPU-based system for an increasing number of boundary elements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available