4.3 Article

AIR-WATER TEMPERATURE RELATIONSHIPS IN THE TROUT STREAMS OF SOUTHEASTERN MINNESOTA'S CARBONATE-SANDSTONE LANDSCAPE

Journal

Publisher

WILEY
DOI: 10.1111/jawr.12046

Keywords

karst hydrology; surface water; groundwater interactions; linear regression models; climate change; variability; rivers; streams; land management

Funding

  1. U.S. Geological Survey
  2. University of Minnesota
  3. Minnesota Department of Natural Resources
  4. U.S. Fish and Wildlife Service
  5. Wildlife Management Institute

Ask authors/readers for more resources

Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R-2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R-2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available