4.5 Article

Relative importance of basicity in the gas phase and in solution for determining selectivity in electrospray ionization mass spectrometry

Journal

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jasms.2008.01.003

Keywords

-

Ask authors/readers for more resources

Electrospray ionization mass spectrometry is a critically important technique for the determination of small molecules, but its application for this purpose is complicated by its selectivity. For positive ion EST-MS analysis of basic analytes, several investigators have pointed to the importance of analyte basicity as a source of selectivity. Currently, however, it is not known whether basicity in the gas phase or in solution is ultimately most important in determining responsiveness. The objective of these studies was to investigate the relative importance of basicity in solution and in the gas phase as factors that predict selectivity in positive ion EST-MS analysis. EST-MS response was compared for a diverse series of protonatable analytes in two different solvents, neat methanol and methanol with 0.5% acetic acid. A correlation was observed between analyte pK(b) and electrospray response. However, the response for the analytes with very high pK(b) values was significantly higher than would be expected based on concentration of the protonated form or the analyte in solution, and this higher response did not appear to result from gas-pliase proton transfer reactions. Although all of the analytes investigated had higher gas-phase basicities than the solvent, their relative responses were not dictated by gas-phase basicity. Higher response was observed for all of the analytes studied in acidified methanol compared with neat methanol, and this higher response was most pronounced for weakly basic analytes. These findings support the use of analyte pKb for rational method development in ESI-MS analysis of small molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available