4.5 Article

Histologic and Biomechanical Evaluation of Crosslinked and Non-Crosslinked Biologic Meshes in a Porcine Model of Ventral Incisional Hernia Repair

Journal

JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS
Volume 212, Issue 5, Pages 880-888

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jamcollsurg.2011.01.006

Keywords

-

Categories

Funding

  1. Synovis Life Sciences (St Paul, MN)
  2. Synovis Surgical Innovations

Ask authors/readers for more resources

BACKGROUND: The objective of this study was to evaluate the biomechanical characteristics and histologic remodeling of crosslinked (Peri-Guard, Permacol) and non-crosslinked (AlloDerm, Veritas) biologic meshes over a 12 month period using a porcine model of incisional hernia repair. STUDY DESIGN: Bilateral incisional hernias were created in 48 Yucatan minipigs and repaired after 21 days using an underlay technique. Samples were harvested at 1, 6, and 12 months and analyzed for biomechanical and histologic properties. The same biomechanical tests were conducted with de novo (time 0) meshes as well as samples of native abdominal wall. Statistical significance (p < 0.05) was determined using 1-way analysis of variance with a Fisher's least significant difference post-test. RESULTS: All repair sites demonstrated similar tensile strengths at 1, 6, and 12 months and no significant differences were observed between mesh materials (p > 0.05 in all cases). The strength of the native porcine abdominal wall was not augmented by the presence of the mesh at any of the time points, regardless of de novo tensile strength of the mesh. Histologically, non-crosslinked materials showed earlier cell infiltration (p < 0.01), extracellular matrix deposition (p < 0.02), scaffold degradation (p < 0.05), and neovascularization (p < 0.02) compared with crosslinked materials. However, by 12 months, crosslinked materials showed similar results compared with the non-crosslinked materials for many of the features evaluated. CONCLUSIONS: The tensile strengths of sites repaired with biologic mesh were not impacted by very high de novo tensile strength/stiffness or mesh-specific variables such as crosslinking. Although crosslinking distinguishes biologic meshes in the short-term for histologic features, such as cellular infiltration and neovascularization, many differences diminish during longer periods of time. Characteristics other than crosslinking, such as tissue type and processing conditions, are likely responsible for these differences. (J Am Coll Surg 2011;212:880-888. (C) 2011 by the American College of Surgeons)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available