4.8 Article

Single-Pot Biofabrication of Zinc Sulfide Immuno-Quantum Dots

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 132, Issue 13, Pages 4731-4738

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja909406n

Keywords

-

Funding

  1. National Science Foundation (NSF) [CMMI-0709131]
  2. Genetically Engineered Materials Science anti Engineering Center [DMR-0520567]

Ask authors/readers for more resources

Quantum dots (QDs) are a powerful alternative to organic dyes and fluorescent proteins for biological and biomedical applications. These semiconductor nanocrystals are traditionally synthesized above 200 degrees C in organic solvents using toxic and costly precursors, and further steps are required to conjugate them to a biological ligand. Here, we describe a simple, aqueous route for the one-pot synthesis of antibody-derivatized zinc sulfide (ZnS) immuno-QDs. In this strategy, easily expressed and purified fusion proteins perform the dual function of nanocrystal mineralizers through ZnS binding sequences identified by cell surface display and adaptors for immunoglobin G (IgG) conjugation through a tandem repeat of the B domain of Staphylococcus aureus protein A. Although approximate to 4.3 nm ZnS wurtzite cores could be biomineralized from either zinc chloride or zinc acetate precursors, only the latter salt gives rise to protein-coated QDs with long shelf life and narrow hydrodynamic diameters (8.8 +/- 1.4 nm). The biofabricated QDs have a quantum yield of 2.5% and blue-green ensemble emission with contributions from the band-edge at 340 nm and from trap states at 460 and 665 nm that are influenced by the identity of the protein shell. Murine IgG(1) antibodies exhibit high affinity (K-d = 60 nM) for the protein shell, and stable immuno-QDs with a hydrodynamic diameter of 14.1 +/- 1.3 nm are readily obtained by mixing biofabricated nanocrystals with human IgG.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available