4.7 Article

Microstructural evolution of calcium aluminate cements hydration with silica fume and fly ash additions by scanning electron microscopy, and mid and near-infrared spectroscopy

Journal

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
Volume 91, Issue 4, Pages 1258-1265

Publisher

WILEY
DOI: 10.1111/j.1551-2916.2008.02283.x

Keywords

-

Ask authors/readers for more resources

Calcium aluminate cement (CAC) is less commonly used as ordinary Portland cements (OPCs) for structural concrete, is relatively expensive, but may have certain advantages when used for solidification of wastes; it introduces rapid strength gain and has a higher resistance to chemical attack than OPC. However, the most widely identified degradation process suffered by CAC is the so-called conversion of hexagonal calcium aluminate hydrate to a cubic form. Mixes of CAC with silica fume (SF) or fly ash (FA) represent an interesting alternative for the stabilization of CAC hydrates, which might be attributed to a microstructure based mainly on aluminosilicates. This paper deals with the microstructure of cement pastes fabricated with binders of CAC-SF and CAC-FA, and their evolution over time. Mid infrared and near infrared spectroscopy have been used to assess the microstructure of these formulations. Microstructural characterization was completed by backscattering electron microscopy observation and microanalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available