4.7 Article

Multiferroic BiFeO3 thin films buffered by a SrRuO3 layer

Journal

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
Volume 91, Issue 2, Pages 463-466

Publisher

WILEY
DOI: 10.1111/j.1551-2916.2007.02128.x

Keywords

-

Ask authors/readers for more resources

Multiferroic BiFeO3 thin films of huge polarization have been successfully realized by using SrRuO3 as a buffer layer on a Pt/TiO2/SiO2/Si substrate. They consist of a single perovskite phase and are nearly randomly orientated, where the SrRuO3 buffer layer lowers the crystallization temperature and improves the crystallinity of BiFeO3. With increasing deposition temperature during magnetron sputtering, they undergo an apparent grain growth and reduction in surface roughness. The multiferroic thin films deposited on the SrRuO3-buffered Pt/TiO2/SiO2/Si substrate at higher temperatures show much improved polarization and reduced coercive field, together with a lowered leakage current. A huge remnant polarization (2P(r)) of 150 mu C/cm(2) and a coercive field (2E(c)) of 780 kV/cm were measured for the BiFeO3 film deposited at 650 degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Self-Sustained Programmable Hygroelectronic Interfaces for Humidity-Regulated Hierarchical Information Encryption and Display

Yaoxin Zhang, Zhen Yu, Hao Qu, Shuai Guo, Jiachen Yang, Songlin Zhang, Lin Yang, Shaoan Cheng, John Wang, Swee Ching Tan

Summary: The emerging moisture-driven energy generation (MEG) technology has potential in fields like information security, but this potential is currently untapped. This study reports an original MEG structure that uses selective coating of ionic hygroscopic hydrogels on a carbon black surface to convert moisture energy. By combining hydrogel patterns and encoding methods, a humidity-regulated information encryption and display platform is developed, providing a hierarchical solution for high-security encryption and display.

ADVANCED MATERIALS (2023)

Article Engineering, Environmental

Zincophilic polymer semiconductor as multifunctional protective layer enables Dendrite-Free zinc metal anodes

Jiangmin Jiang, Zhenghui Pan, Jiaren Yuan, Jun Shan, Chenglong Chen, Shaopeng Li, Yaxin Chen, Quanchao Zhuang, Zhicheng Ju, Hui Dou, Xiaogang Zhang, John Wang, John Wang

Summary: By constructing a stable and robust g-C3N4 protective layer on the surface of zinc metal anodes, the performance of aqueous zinc-ion batteries can be improved, inhibiting dendrite growth and enhancing Coulombic efficiency and lifespan.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Multidisciplinary

Water as a Modifier in a Hybrid Coordination Network Glass

Soren S. Sorensen, Xiangting Ren, Tao Du, Ayoub Traverson, Shibo Xi, Lars R. Jensen, Mathieu Bauchy, Satoshi Horike, John Wang, Morten M. Smedskjaer

Summary: This work demonstrates that water can depolymerize polyhedra with labile metal-ligand bonds in a cobalt-based coordination network, resulting in nonstoichiometric glasses. The addition of water molecules promotes the breakage of network bonds and coordination number changes, thereby lowering melting and glass transition temperatures. These structural changes alter the physical and chemical properties of the glass, similar to the concept of modifiers in oxides. This approach can be extended to other transition metal-based coordination networks, enabling diversification of hybrid glass chemistry.

SMALL (2023)

Article Materials Science, Multidisciplinary

Self-powered sensitive pressure sensor matrix based on patterned arrays of flexible (K,Na)NbO3 piezoelectric nanorods

Lei Jiang, Mengrui Lu, Piaoyun Yang, Yijing Fan, Hao Huang, Juan Xiong, Zhao Wang, Haoshuang Gu, John Wang

Summary: In this study, a pressure sensor matrix capable of two-dimensional pressure mapping was developed by using patterned piezoelectric (K,Na)NbO3 (KNN) nanorod arrays. The KNN nanorods exhibited excellent mechanical flexibility, elasticity, and piezoelectric performance, enabling a high sensitivity of up to 0.20 V N-1 and a detection limit as low as 20 g. The spatially separated micro sensor matrix allowed for accurate self-powered pressure mapping and precise analysis of mechanical stimulations.

SCIENCE CHINA-MATERIALS (2023)

Review Chemistry, Multidisciplinary

SACs on Non-Carbon Substrates: Can They Outperform for Water Splitting?

Tao Sun, Wenjie Zang, Jianguo Sun, Chenguang Li, Jun Fan, Enzhou Liu, John Wang

Summary: Non-carbon-supported single-atom electrocatalysts (SACs) have attracted great interest for water splitting due to their unique bond and coordination properties, as well as their superior and tunable catalytic performance compared to carbon-supported SACs and commercial catalysts. The structure, surficial chemical groups, vacancy defects of non-carbon host materials, as well as the properties and population of single atoms, play important roles in the electrocatalytic performance of these SACs. The wide range of host materials and single atom types present limitless possibilities for the design of SACs with tunable structures and electrocatalysis behaviors.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Polymer Science

Constructive Electroactive 2D/2D MoS2-N-rGO and 1D/2D Bi2S3-N-rGO Heterostructure for Excellent Mo-Bi Supercapattery Applications

Saeid M. Elkatlawy, Abdelhamid A. Sakr, John Wang, Abdelnaby M. Elshahawy

Summary: In this study, an effective strategy was designed to combine transition metal sulfides with nitrogen doped reduced graphene oxide hydrogels, improving the overall supercapattery properties.

JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS (2023)

Article Chemistry, Multidisciplinary

Noncryogenic Air Separation Using Aluminum Formate Al(HCOO)3 (ALF)

Hayden A. Evans, Dan Zhao, Pieremanuele Canepa, Anthony K. Cheetham, Dinesh Mullangi, Taner Yildirim, Yuxiang Wang, Zeyu Deng, Zhaoqiang Zhang, Thuc T. Mai, Fengxia Wei, John Wang, Angela R. Hight Walker, Craig M. Brown

Summary: The process of separating oxygen from air to create oxygen-enriched gas streams is important in both industrial and medical fields. However, existing technologies for this process are energy-intensive and require infrastructure. This study demonstrates that a metal-organic framework, Al(HCOO)3 (ALF), can effectively adsorb oxygen at near-ice temperatures, with good time-dependent selectivity. ALF exhibits a high oxygen adsorption capacity of approximately 1.7 mmol/g at 190K and atmospheric pressure, and approximately 0.3 mmol/g at salt-ice temperatures of 250K. ALF shows potential as a low-cost option for oxygen separation applications.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

Exclusive Recognition of CO2 from Hydrocarbons by Aluminum Formate with Hydrogen-Confined Pore Cavities

Zhaoqiang Zhang, Zeyu Deng, Hayden A. Evans, Dinesh Mullangi, Chengjun Kang, Shing Bo Peh, Yuxiang Wang, Craig M. Brown, John Wang, Pieremanuele Canepa, Anthony K. Cheetham, Dan Zhao

Summary: The exclusive capture of carbon dioxide (CO2) from hydrocarbon mixtures is crucial in the petrochemical industry. A new study introduces a ultramicroporous material, ALF, which can selectively capture CO2 from hydrocarbon mixtures with high capacity and efficiency. The material's unique pore chemistry allows for molecular recognition of CO2 by hydrogen bonding, while rejecting other hydrocarbons.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Physical

Hydrogen Intercalation-Induced Crystallization of Ternary PdNiP Alloy Nanoparticles For Direct Formic Acid Fuel Cells

Hongfei Cheng, Jun Zhou, Huiqing Xie, Songlin Zhang, Jintao Zhang, Shengnan Sun, Ping Luo, Ming Lin, Shijie Wang, Zhenghui Pan, John Wang, Xian Jun Loh, Zhaolin Liu

Summary: Direct formic acid fuel cells (DFAFCs) are a promising energy source in the future low-carbon economy, but the lack of efficient electrocatalysts for anodic formic acid oxidation (FAO) hinders their scale-up and commercialization. The FAO performance of palladium hydrides (PdHx) has been found to be superior to pristine Pd, and this study explores the controlled synthesis and electrocatalytic behaviors of PdHx-based nanomaterials. The hydrogen intercalation-induced crystallization of PdNiP alloy nanoparticles is reported, and the obtained PdNiP-H nanoparticles exhibit excellent FAO performance, demonstrating their potential for DFAFC applications.

ADVANCED ENERGY MATERIALS (2023)

Article Nanoscience & Nanotechnology

Hierarchical Cu Nanoarray/NiFe Hydroxide Nanostructures for Efficient Electrochemical Water Oxidation

Lu Mao, Xiaoyu Hao, Yu Zhang, Siew Yee Wong, Jiating He, Suxi Wang, Ximeng Liu, Xiaolei Huang, John Wang, Xu Li

Summary: In this study, hierarchical NiFe hydroxide-Cu arrays are prepared as the electrocatalysts for oxygen evolution reaction (OER) through solution etch and sequential electrolysis. The electrochemically reduced Cu nanoarrays serve as a conductive core, providing superior conductivity for electron transfer, while the unique hierarchical 3D structure offers a large active surface area, a short ion diffusion path, and open channels for efficient gas release. The resulting NiFe hydroxide-Cu arrays on copper foam exhibit outstanding catalytic performance with current densities of 10 and 100 mA cm(-2) achieved at 245 and 300 mV, respectively, in a 1 M KOH solution. Additionally, a small Tafel slope of 51 mV dec(-1) and excellent electrochemical durability of up to 100 h are demonstrated.

ACS APPLIED NANO MATERIALS (2023)

Review Materials Science, Multidisciplinary

Single-atom metal-nitrogen-carbon catalysts energize single molecule detection for biosensing

Xianyang Zhang, Pengfei Chen, Siwuxie He, Bowen Jiang, Yong Wang, Yonghua Cheng, Jian Peng, Francis Verpoort, John Wang, Zongkui Kou

Summary: Biosensors featuring single molecule detection offer great opportunities in various fields, but face challenges due to the lack of activity, precision molecule selectivity, and understanding of the operating mechanism. Single-atom catalysts (SACs), particularly those that mimic the natural metalloenzyme structure, provide practical-use feasibilities for single molecule detections with high molecular selectivity and easy fabrication. This review discusses the history, advantages, and applications of SACs in molecule-scale biosensors, emphasizing their sensing modes and coordination-modulated signal amplifications.

INFOMAT (2023)

Article Chemistry, Multidisciplinary

MAX, MXene, or MX: What Are They and Which One Is Better?

Jianguo Sun, Binbin Liu, Qi Zhao, Chin Ho Kirk, John Wang

Summary: This article provides an overview of the research progress on MXenes in energy and catalysis, with a specific focus on the potential of termination-free MXene in catalysis and redox reactions. The authors believe that MX has great potential in future catalysis and propose the extension towards high entropy and single-atom modifications.

ADVANCED MATERIALS (2023)

Review Chemistry, Multidisciplinary

Better engineering layered vanadium oxides for aqueous zinc-ion batteries: Going beyond widening the interlayer spacing

Yue Guo, Hanmei Jiang, Binbin Liu, Xingyang Wang, Yifu Zhang, Jianguo Sun, John Wang

Summary: Aqueous zinc-ion batteries (ZIBs) are considered promising for large-scale grid energy storage due to their safety, low costs, and environmental friendliness. Vanadium oxides, particularly V2O5, have been widely used as cathode materials for ZIBs because of their high theoretical capacity and structural stability. However, there are challenges in achieving high capacity, long lifespan, and excellent rate performance with vanadium-based ZIBs.

SMARTMAT (2023)

Article Chemistry, Multidisciplinary

Laser-Ironing Induced Capping Layer on Co-ZIF-L Promoting In Situ Surface Modification to High-Spin Oxide-Carbon Hybrids on the Real Catalyst for High OER Activity and Stability

Weihao Liu, Jing Yang, Yizhe Zhao, Ximeng Liu, Jian Heng, Minghui Hong, Yong-Wei Zhang, John Wang

Summary: This study introduces a novel laser-ironing approach to modulate the structural and compositional evolution of electrocatalysts during the reaction, enhancing their performance and stability. The laser-ironing capping layer (LICL) formed during the process sustains the leaf-like morphology and promotes the formation of highly active Co3O4 nanoclusters. The results provide new insights into facile and high-precision surface microstructure control.

ADVANCED MATERIALS (2023)

Review Chemistry, Analytical

Design, Fabrication and Applications of Electrospun Nanofiber-Based Surface-Enhanced Raman Spectroscopy Substrate

Xue Pan, Lu Bai, Chengcheng Pan, Zhicheng Liu, Seeram Ramakrishna

Summary: This review discusses the fabrication methods and applications of SERS substrates based on electrospun nanofibers, and highlights the challenges and prospects.

CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY (2023)

Article Materials Science, Ceramics

Microwave dielectric characterization and densification mechanism analysis of CaO-B2O3-SiO2 glass-ceramic/Al2O3 composites for LTCC applications

Zilong Xiong, Wenzhuo Xue, Mujun Li, Feihu Tan, Yupeng Chen, Hongyu Yu

Summary: In this study, CBS glass/Al2O3 composites were developed for LTCC applications based on a CaO-B2O3-SiO2 (CBS) glass system with a high boron content. The study revealed that the softening of glass and interfacial reaction between the glass and Al2O3 were the two most important factors affecting LTCC's densification process. Real-time shrinkage rate of LTCC during sintering was successfully simulated, and it was proven that the formation of the CaAl2(BO3)O phase played a significant role in reducing glass viscosity and promoting dense structure formation. The resulting LTCC composite exhibited excellent performance for high-frequency applications.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Response of nonstoichiometric pyrochlore composition Nd1.8Zr2.2O7.1 to electronic excitations

Saurabh Kumar Sharma, Vinita Grover, Rakesh Shukla, Abid Hussain, Ambuj Mishra, Pawan Kumar Kulriya

Summary: In this study, the disordering caused by swift heavy ion irradiation in two different compositions of pyrochlore structures was investigated. X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy were used to analyze the samples before and after irradiation. It was found that both compositions underwent amorphization due to irradiation, with a slower rate observed in Nd1.8Zr2.2O7.1. The irradiation-induced modified track region in Nd1.8Zr2.2O7.1 consisted of defect-rich pyrochlore structure, anion-deficient fluorite structure, and amorphous domains.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Influence of ion-induced lattice stress and phase transition on the irradiation resistance of high-entropy ceramics

Jiabei He, Mengshan Song, Ming Yang, Miaomiao Zhu

Summary: This study investigates the influence of ion irradiation on high-entropy ceramics and finds that irradiation-induced lattice rearrangement can improve the radiation resistance of these ceramics.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Multifunctional tantalum disilicide ceramics sintered at high temperature and high pressure

Yajie Yu, Shi He, Zhengang Zhang, Haihua Chen, Peipeng Jin, Binnian Zhong, Linhui Zhang, Liping Wang, Cheng Lu

Summary: Silicide ceramics, including tantalum disilicide (TaSi2), are known for their exceptional physical properties but are limited in practical applications due to their inherent brittleness at room temperature. In this study, we successfully improved the mechanical properties of TaSi2 ceramics and increased their electrical conductivity by modifying the preparation methods and sintering conditions. These findings provide valuable insights for future applications of TaSi2 and the design of advanced ceramic materials.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Exploring the Ln-O bonding nature and charge characteristics in monazite in relation to microwave dielectric properties

Jian Li, Jia Liu, Yongcui Zhang, Wei Sun, Yang Wang, Haitao Wu, Ling Li, Chuanbing Cheng, Yingying Wang, Ke Tan, Futian Liu

Summary: Microstructure design plays a crucial role in regulating the microwave dielectric properties of materials, however, the understanding of frequency temperature stability and related micromechanism remains limited. In this study, a combination of first-principles calculations and experimental observation was used to investigate the correlation among sintering behavior, crystal structure, bonding nature, and microwave dielectric properties of LnPO(4) (Ln = Eu, Pr) ceramics. The research findings systematically clarify the optimized effect and micromechanism of lanthanides on the dielectric properties of monazite ceramics, providing insights into the design and enhancement of microwave dielectric materials.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Effect of fiber orientation on tribological properties of fiber-reinforced C/C-SiC composites mated with ceramic ball

Wenqian Pan, Xizhen Xia, Wei Zhou, Yang Li

Summary: The study investigates the frictional and wear behaviors of carbon fiber-reinforced SiC ceramic matrix composites with different fiber orientations mating with ceramic balls. The results show that fiber orientation significantly affects the friction and wear properties of the composites. Pads with randomly arranged fibers demonstrate better friction stability and lower wear volume, potentially suitable for bearing material applications. The research also explores the factors influencing the formation of continuous tribo-film and identifies abrasive wear and oxidation wear as the dominant wear mechanisms for the friction pairs.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Synthesis and sintering of MAX phases in the Zr-Al-C system

Sergey Nikolaevich Perevislov, Ilya Evgenievich Arlashkin, Valentina Leonidovna Stolyarova

Summary: This paper describes the synthesis and sintering of MAX phases in the Zr-Al-C system. Different mixtures of initial Zr/Al/C and Zr/Al/ZrC powders were used to synthesize Zr2AlC and Zr3AlC2 MAX phases. The highest content of Zr3AlC2 MAX phase was obtained using a component ratio of 1:1.5:2-51.1 vol.% of Zr/Al/ZrC powders.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

B-site internal-strain regulation engineering of tungsten bronze structural dielectric ceramics

Weijia Luo, Xubin Wang, Baiheng Bai, Jianli Qiao, Xingcong Chen, Yongzheng Wen, Jingbo Sun, Lingxia Li, Ji Zhou

Summary: This study successfully establishes the relationship between internal strain and dielectric loss by synthesizing and designing specific structure of tungsten bronze ceramics, and concludes that controlling internal strain can effectively reduce dielectric loss. This research is of great significance for the development of future all-ceramic non-Hermitian devices.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Ultrafast high-temperature sintering of ZrB2

Santanu Mondal, Juan Diego Shiraishi Lombard, Sreenivasulu Gollapudi, Carolina Tallon, Jie-Fang Li, Dwight Viehland

Summary: Ultrafast high-temperature sintering (UHS) is an effective method for rapidly densifying ZrB2 powders. The final grain size increases with longer sintering duration. X-ray diffraction and energy-dispersive spectroscopy show crystalline phase and compositional uniformity in ZrB2 after UHS.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Effects of doping on electronic structure and ion diffusion of Li2FeSiO4

JiaNan Wang, ZhiQiang Li, YongZheng Zhu, Yao Liang, Yan Cui, HuaLong Tao, Bo Song, Alexander Nikiforov, ZhiHua Zhang

Summary: First-principles calculations were performed to investigate the crystal structure, electronic structure, and ion diffusion of sulfur-doped Li2FeSiO4. The results showed that sulfur doping can improve the electronic conductivity and reduce the energy barrier for ion diffusion.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Early structural build-up behavior, setting mechanism, and nanostructure of alkali-activated GGBFS mixtures

Xiaodi Dai, Serdar Aydin, Mert Yuecel Yardimci, Gunter Reekmans, Peter Adriaensens, Geert De Schutter

Summary: This study investigates the rheological behavior, solidification process, and nanostructure changes of sodium hydroxide-activated slag (NH-AAS) and sodium silicate-activated slag (SS-AAS) pastes over time. The results show that NH-AAS and SS-AAS release similar heat and reach a similar reaction degree at their initial setting times, but have different gel structures.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Effect of resting time on rheological properties of glass bead suspensions: Depletion and bridging force among particles

Yanliang Ji, Simon Becker, Zichen Lu, Alexander Mezhov, Regine von Klitzing, Schmidt Wolfram, Dietmar Stephan

Summary: This study reveals the significant influence of resting time on the rheological properties of cement suspensions, which is closely related to non-absorbed polycarboxylate superplasticizers (PCEs) size variation. Adsorbed PCE during resting tends to bridge particles instead of dispersing them, leading to an increased yield stress.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Multiscale understanding the effect of K/Na ratio on electrical properties of high-performance KNN-based ceramics

Yifeng Huang, Xin Wang, Yinchang Ma, Xiang Lv, Jiagang Wu

Summary: This study investigates the effect of K/Na ratio on the phase structure, ferroelectric domains, and piezoelectric properties of potassium sodium niobate (KNN)-based ceramics. It reveals that high Na+ content leads to large ferroelectric domains, while high K+ content results in local polarity heterogeneity and distinct dielectric relaxational behavior. The balanced local polarity and stress heterogeneities contribute to improved piezoelectricity.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Hierarchical porous MgAl2O4 ceramic in situ structured by hollow particles: Low-shrinkage and high-strength

Zun Xia, Yedong Rong, Hao Li, Ye Dong, Hongbo Yu, Jie Xu, Xiuhui Wang, Jinlong Yang

Summary: This study presents the synthesis of hollow MgAl2O4 particles in situ within porous ceramics, resulting in volume expansion and the formation of a hierarchical pore structure, leading to a significant improvement in compressive strength.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

An exploration of lattice transformation mechanism of muscovite single crystal under EB irradiation at 0-1000 kGy

Honglong Wang, Zhiguo Sun, Faming Xia, Chenguang Yang, Xiaoguang Wang, Jintang Li, Linxu Jiang

Summary: In this study, the micro-geometry morphology variation and microstructural transformation mechanism of muscovite crystals under electron beam irradiation were explored. The results revealed the instability of the muscovite lattice under irradiation, as well as the expansion and shrinkage of the lattice with increasing dose. The study also identified changes in chemical structure and other mechanisms involved. These findings are significant for the design of radiation-resistant silicate materials and the manufacturing of electronic components used in the aerospace industry.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)