4.5 Article

Inverted direction of wave propagation (IDWP) in the cochlea

Journal

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Volume 123, Issue 3, Pages 1513-1521

Publisher

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.2828064

Keywords

-

Funding

  1. NIDCD NIH HHS [R01 DC00141, 1-P30-DC005983, P30 DC005983, R01 DC000141] Funding Source: Medline

Ask authors/readers for more resources

The classical view on wave propagation is that propagating waves are possible in both directions along the length of the basilar membrane and that they have identical properties. Results of several recently executed experiments [T. Ren, Nat. Neurosci. 2, 333-334 (2004) and W. X. He, A. L. Nuttall, and T. Ren, Hear. Res., 228, 112-122 (2007)] appear to contradict this view. In the current work measurements were made of the velocity of the guinea-pig basilar membrane (BM). Distortion products (DPs) were produced by presenting two primary tones, with frequencies below the characteristic frequency f(0) of the BM location at which the BM measurements were made, with a constant frequency ratio. In each experiment the phase of the principal DP, with frequency 2f(1) -f(2), was recorded as a function of the DP frequency. The results indicate that the DP wave going from the two-tone interaction region toward the stapes is not everywhere traveling in the reverse direction, but also in the forward direction. The extent of the region in which the forward wave occurs appears larger than is accounted for by classical theory. This property has been termed inverted direction of wave propagation. The results of this study confirm the wave propagation findings of other authors. The experimental data are compared to theoretical predictions for a classical three-dimensional model of the cochlea that is based on noise-response data of the same animal. Possible physical mechanisms underlying the findings are discussed. (C) 2008 Acoustical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available