4.5 Article

Preclinical studies of the role of iron oxide magnetic nanoparticles for nonpalpable lesion localization in breast cancer

Journal

JOURNAL OF SURGICAL RESEARCH
Volume 185, Issue 1, Pages 27-35

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jss.2013.05.108

Keywords

Magnetic nanoparticles; Nonpalpable lesion localization; Breast cancer

Categories

Funding

  1. Centre of Excellence in Medical Engineering, King's College London
  2. Wellcome Trust
  3. EPSRC [WT 088641/Z/09/Z]

Ask authors/readers for more resources

Background: One-third of all breast cancers are present as clinically nonpalpable lesions. The current gold standard treatment is surgical excision by wire-guided localization. This technique has patient, technical, and scheduling drawbacks. Alternatives exist but depend on radioisotopes with their legislative and waste management issues. Magnetic nanoparticles (MNPs) have already been successfully used for sentinel lymph node biopsy in breast cancer. We therefore aimed to determine the feasibility of using iron oxide MNPs and a handheld magnetometer for the localization of nonpalpable breast cancers using a preclinical model. Methods: We constructed phantom models to assess the relationship between the handheld magnetometer peak readings and the variation in volume of iron oxide MNPs and their depth of injection in a series of porcine and avian tissue models. We also radiolabeled the MNPs with Tc-99m and alendronate to create the conjugate Tc-99m-dipicolylamine-alendronate-MNP and used nano-single-photon emission computed tomography-computed tomography to perform imaging to demonstrate localization properties. Results: The handheld magnetometer readings follow a linear relationship with variations in volume of magnetic tracer and a logarithmic relationship with variations in depth of injection of the magnetic tracer at a fixed volume. The application of derived quadratic equations from the R-2 curves of handheld magnetometer signal versus depth allowed calculation of the depth of injection of iron oxide MNPs from the handheld magnetometer readings and demonstrated the predictable behavior of the iron oxide MNPs and the handheld magnetometer. Satisfactory localization characteristics were confirmed in the phantoms and imaged using nano-single-photon emission computed tomography and computed tomography. Conclusions: Iron oxide MNPs demonstrate positive localization characteristics in phantom models with predictable behavior patterns. We suggest that the use of MNPs provides a potential technique for the localization of nonpalpable breast lesions and deserves further exploration in animal and human feasibility studies. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available