4.6 Article

Thermally driven classical Heisenberg model in 1D with a local time varying field

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1742-5468/2013/12/P12005

Keywords

transport processes/heat transfer (theory); heat conduction

Ask authors/readers for more resources

We study thermal transport in the one-dimensional classical Heisenberg model driven by boundary heat baths and in the presence of a local time varying magnetic field. We find that, in the steady state, the energy current shows thermal resonance as the frequency of the time-periodic forcing is varied. Even in the absence of a thermal bias a steady nonzero energy current can be induced in the system, whereas for the thermally driven system a current reversal can be achieved in the bulk by suitably tuning the system parameters. When the amplitude of the forcing field is increased the system exhibits multiple resonance peaks. Thermal resonance survives in the thermodynamic limit and their magnitude increases as the temperature of the system is decreased. We find that the resonance frequency is an intrinsic frequency of the model and is related to its spin wave dispersion spectrum. Finally we show that, similar to other generic force-driven systems, there is no thermal pumping despite the current reversal in the bulk of the system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available