4.3 Article

Residual life estimation based on bivariate non-stationary gamma degradation process

Journal

JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
Volume 85, Issue 2, Pages 405-421

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00949655.2013.824448

Keywords

performance characteristics; copula function; bivariate gamma process; two-stage method; degradation process; residual life

Funding

  1. National Science Foundation of China [201206110079]

Ask authors/readers for more resources

Due to the growing importance in maintenance scheduling, the issue of residual life (RL) estimation for some high reliable products based on degradation data has been studied quite extensively. However, most of the existing work only deals with one-dimensional degradation data, which may not be realistic in some cases. Here, an adaptive method of RL estimation is developed based on two-dimensional degradation data. It is assumed that a product has two performance characteristics (PCs) and that the degradation of each PC over time is governed by a non-stationary gamma degradation process. From a practical consideration, it is further assumed that these two PCs are dependent and that their dependency can be characterized by a copula function. As the likelihood function in such a situation is complicated and computationally quite intensive, a two-stage method is used to estimate the unknown parameters of the model. Once new degradation information of the product being monitored becomes available, random effects are first updated by using the Bayesian method. Following that, the RL at current time is estimated accordingly. As the degradation data information accumulates, the RL can be re-estimated in an adaptive manner. Finally, a numerical example about fatigue cracks is presented in order to illustrate the proposed model and the developed inferential method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available