4.7 Article

Nonlinear vibration of edge cracked functionally graded Timoshenko beams

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 324, Issue 3-5, Pages 962-982

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2009.02.023

Keywords

-

Funding

  1. City University of Hong Kong [7002211]

Ask authors/readers for more resources

Nonlinear vibration of beams made of functionally graded materials (FGMs) containing an open edge crack is studied in this paper based on Timoshenko beam theory and von Karman geometric nonlinearity. The cracked section is modeled by a massless elastic rotational spring. It is assumed that material properties follow exponential distributions through beam thickness. The Ritz method is employed to derive the governing eigenvalue equation which is then solved by a direct iterative method to obtain the nonlinear vibration frequencies of cracked FGM beams with different end supports. A detailed parametric study is conducted to study the influences of crack depth, crack location, material property gradient, slenderness ratio, and end supports on the nonlinear free vibration characteristics of cracked FGM beams. It is found that unlike isotropic homogeneous beams, both intact and cracked FGM beams show different vibration behavior at positive and negative amplitudes due to the presence of bending-extension coupling in FGM beams. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available