4.3 Article

Simulation and Model Validation of the Surface Cooling System for Improving the Power of a Photovoltaic Module

Publisher

ASME
DOI: 10.1115/1.4004508

Keywords

simulation; PV module; solar energy; surface cooling system; energy balance

Funding

  1. Research Institute of Agricultural Science at Kangwon National University

Ask authors/readers for more resources

One of the unique features of photovoltaic (PV) modules is the power drop that occurs as the silicon temperature increases due to the characteristics of the crystalline silicon used in a solar cell. To overcome this reduction in power, module surface cooling using water circulation was employed. The model performance was then conceptually evaluated and experimentally verified. A transient model was developed using energy balances and heat and mass transfer relationships from various other sources to simulate the surface cooling system. The measurements were in good agreement with the model predictions. The maximum deviation between the measured and predicted water and silicon temperature differed by less than 4 degrees C. The maximum power enhancement in response to the cooling was 11.6% when compared with a control module. The surface cooling system also washed the module surface via water circulation, which resulted in an additional power up of the PV module in response to removal of the particles that interfere with solar radiation from the surface of the PV module. Accordingly, the cooling system could reduce maintenance costs and prevent accidents associated with cleaning. In addition, the increase in cooling water temperature can serve as a heat source. The system developed here can be applied to existing photovoltaic power generation facilities without any difficulties as well. [DOI: 10.1115/1.4004508]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available