4.6 Article

Relationship between mercury and organic carbon in sediment cores from Lakes Qinghai and Chenghai, China

Journal

JOURNAL OF SOILS AND SEDIMENTS
Volume 13, Issue 6, Pages 1084-1092

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11368-013-0694-2

Keywords

History; Mercury; Rock-Eval pyrolysis; Sediment; Soluble organic carbon

Funding

  1. National Natural Science Foundation of China [41003048, 40973090, 41261140337]

Ask authors/readers for more resources

Factors such as organic matter can significantly influence the distribution of mercury (Hg) in aquatic environments. Recent studies in Arctic and sub-Arctic lakes in Canada have investigated whether scavenging of Hg by phytoplankton significantly affects distributions of Hg in sediments. This study examined the relationships between Hg and organic components in two contrasting lakes (Lakes Qinghai and Chenghai) in low and middle latitudes of China. Sediment cores from the less-polluted, oligotrophic Lake Qinghai (QH) and from the polluted, eutrophic Lake Chenghai (CH) were collected by a gravity corer. The cores were sectioned and transported on ice to the laboratory where they were stored at -20 A degrees C. Subsamples were dried in a vacuum freeze dryer and grounded with a mortar and pestle prior to analyses. Total concentrations of Hg were quantified using cold vapor atomic absorption spectrometry. Total organic carbon (TOC) was quantified using an elemental analyzer after removal of carbonate. The Rock-Eval 6 pyrolysis technique (Vinci Technologies, Rueil-Malmaison, France) was used to deconvolute TOC in sediments into S1, S2, and RC components; S2 was further separated into S2a and S2b. Different relationships between Hg and TOC were found in the two lakes, which suggest that different types of organic compounds might play completely different roles in the distribution of Hg in lakes. S1 (the soluble organic matter (SOM)) was found to significantly control distributions of Hg in sediments of both lakes, while S2 and S2a were not. Combining the synchronous fluctuations of Hg and the oxygen index in the QH sediment core and in recent sections of CH suggested that allochthonous SOM derived from the terrestrial environment had an important influence on the distribution of Hg in both lakes and a large portion of Hg that originated from the lake catchment. This study provides further evidence that organic matter is one of the most important factors that influences distributions of Hg in lake sediments and that SOM was the primary form of carbon associated with sedimentation of Hg. The results also suggest that Hg in lake sediments might not accurately represent its pollution history as it could also be influenced by land use, such as agriculture or other human activities in the catchment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available