4.8 Article

Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 Interacts with TGD1, TGD2, and TGD4 to Facilitate Lipid Transfer from the Endoplasmic Reticulum to Plastids

Journal

PLANT CELL
Volume 27, Issue 10, Pages 2941-2955

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1105/tpc.15.00394

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DEAC0298CH10886]
  2. Office of Basic Energy Sciences, U.S. Department of Energy [DE-SC0012704]

Ask authors/readers for more resources

The biogenesis of photosynthetic membranes in the plastids of higher plants requires an extensive supply of lipid precursors from the endoplasmic reticulum (ER). Four TRIGALACTOSYLDIACYLGLYCEROL (TGD) proteins (TGD1,2,3,4) have thus far been implicated in this lipid transfer process. While TGD1, TGD2, and TGD3 constitute an ATP binding cassette transporter complex residing in the plastid inner envelope, TGD4 is a transmembrane lipid transfer protein present in the outer envelope. These observations raise questions regarding how lipids transit across the aqueous intermembrane space. Here, we describe the isolation and characterization of a novel Arabidopsis thaliana gene, TGD5. Disruption of TGD5 results in similar phenotypic effects as previously described in tgd1,2,3,4 mutants, including deficiency of ER-derived thylakoid lipids, accumulation of oligogalactolipids, and triacylglycerol. Genetic analysis indicates that TGD4 is epistatic to TGD5 in ER-to-plastid lipid trafficking, whereas double mutants of a null tgd5 allele with tgd1-1 or tgd2-1 show a synergistic embryo-lethal phenotype. TGD5 encodes a small glycine-rich protein that is localized in the envelope membranes of chloroplasts. Coimmunoprecipitation assays show that TGD5 physically interacts with TGD1, TGD2, TGD3, and TGD4. Collectively, these results suggest that TGD5 facilitates lipid transfer from the outer to the inner plastid envelope by bridging TGD4 with the TGD1,2,3 transporter complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available