4.2 Article

Functional expression of cytochrome P450 in Escherichia coli: An approach to functional analysis of uncharacterized enzymes for flavonoid biosynthesis

Journal

PLANT BIOTECHNOLOGY
Volume 32, Issue 3, Pages 205-213

Publisher

JAPANESE SOC PLANT CELL & MOLECULAR BIOLOGY
DOI: 10.5511/plantbiotechnology.15.0605a

Keywords

Bioconversion; cytochrome P450; Escherichia coli; heterologous expression; isoflavone 2 '-hydroxylase

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [25108723]
  2. Grants-in-Aid for Scientific Research [25108723] Funding Source: KAKEN

Ask authors/readers for more resources

Biochemical analyses of metabolic enzymes are performed using in vitro assays with enzymes and substrates. Enzyme samples are generally prepared from heterologous cell expression systems, which are also used as tools to obtain substrates that are not commercially available or cannot be easily isolated from natural sources. Cytochrome P450 (CYP) comprises a widely distributed family of monooxygenases that are commonly used for biosynthesis of natural products. Since CYP activity requires an electron transport system with membrane bound CYP reductase (CPR), it has been believed that CYP is not easily expressed in Escherichia coli, despite multiple advantages as a heterologous system compared with other systems that employ eukaryotic yeast and insect cells. In this study, we demonstrated simple and efficient methods for functional expression of CYPs in E. coli using commercially available vectors in which the transmembrane-domain truncated CYP was co-expressed with CPR as a discrete polypeptide, and we also used them to identify CYP81E11, CYP81E12, and CYP81E18 of soybean as isoflavone 2'-hydroxylase. Culture conditions were optimized for the bioconversion of I2'H, and the highest production was 161 mgl(-1) of medium under optimized conditions. Subsequently, six other CYPs that are involved in flavonoid biosynthesis were tested for their applicability in the E. coli expression system. Establishment of the present method may facilitate functional expression of CYPs for preparation of CYP products, including substrates for enzymatic reactions, valuable natural products, and their unnatural derivatives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available