4.5 Article

Radium removal from aqueous solutions by adsorption on non-treated and chemically modified biomass by-product

Journal

JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
Volume 295, Issue 3, Pages 2095-2102

Publisher

SPRINGER
DOI: 10.1007/s10967-012-2336-3

Keywords

Radium; Olive cake; Chemical treatment; Adsorption; Waters

Ask authors/readers for more resources

The adsorption efficiency of a biomass by-product (olive cake) regarding the removal of radium (Ra-226) from aqueous solutions has been investigated prior and after its chemical treatment. The chemical treatment of the biomass by-product included phosphorylation and MnO2-coating. The separation/removal efficiency has been studied as a function of pH, salinity (NaCl) and calcium ion concentration (Ca2+) in solution. Evaluation of the experimental data shows clearly that the phosphorylated biomass by-product presents the highest adsorption capacity and efficiency followed by the MnO2-coated material and the non-treated biomass by-product. However, regarding the effect of salinity and the presence of competitive cations (e.g. Ca2+) on the adsorption/removal efficiency, the MnO2-coated material shows the lowest decline in efficiency (only 2 % of the relative adsorption efficiency) followed by the non-treated and the phosphorylated biomass by-product. The results of the present study indicate that depending on the physicochemical characteristics of the radium-contaminated water, all three types of the biomass by-product could be effectively used for the treatment of radium-contaminated waters. Nevertheless, the MnO2-coated material is expected to be the most effective adsorbent and an alternative to MnO2 resins for the treatment of environmentally relevant waters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available