4.3 Article

Dose Gradient Analyses in Linac-based Intracranial Stereotactic Radiosurgery Using Paddick's Gradient Index: Consideration of the Optimal Method for Plan Evaluation

Journal

JOURNAL OF RADIATION RESEARCH
Volume 52, Issue 5, Pages 592-599

Publisher

OXFORD UNIV PRESS
DOI: 10.1269/jrr.11005

Keywords

Dynamic conformal arc; Gradient index; Linear accelerator; Stereotactic radiosurgery

Ask authors/readers for more resources

The objective of our study was to describe the dose gradient characteristics of Linac-based stereotactic radiosurgery using Paddick's gradient index (GI) and to elucidate the factors influencing the GI value. Seventy-three plans for brain metastases using the dynamic conformal arcs were reviewed. The GI values were calculated at the 80% and 90% isodose surfaces (IDSs) and at the different target coverage IDSs (D99, D95, D90, and D85). The GI values significantly decreased as the target coverage of the reference IDS increased (the percentage of the IDS decreased). There was a significant inverse correlation between the GI values and target volume. The plans generated with the addition of a 1-mm leaf margin had worse GI values both at the D99 and D95 relative to those without leaf margin. The number and arrangement of arcs also affected the GI value. The GI values are highly sensitive to (1) the IDS selection variability for dose prescription or evaluation, (2) the target volume, and (3) the planning method. To objectively compare the quality of dose gradient between rival plans, it would be preferable to employ the GI defined at the reference IDS indicating the specific target coverage (e.g., D95), irrespective of the intended marginal dose. The modified GI (mGI), defined in this study, substituting the denominator of the original GI with the target volume, would be useful to compensate for the false superior GI value in cases of target over-coverage with the reference IDS and to objectively evaluate the dose gradient outside the target boundary.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available