4.7 Article

S-Nitrosylation Analysis in Brassica juncea Apoplast Highlights the Importance of Nitric Oxide in Cold-Stress Signaling

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 13, Issue 5, Pages 2599-2619

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr500082u

Keywords

apoplast; nitric oxide; thiol pool; S-nitrosylation; cold stress

Funding

  1. Special Assistant Programme (SAP, SAP II), UGC grant, India [F 3-10/2011]
  2. University of Delhi

Ask authors/readers for more resources

Reactive nitrogen species (RNS) including nitric oxide (NO) are important components of stress signaling. However, RNS-mediated signaling in the apoplast remains largely unknown. NO production measured in the shoot apoplast of Brassica juncea seedlings showed nonenzymatic nitrite reduction to NO. Thiol pool quantification showed cold-induced increase in the protein (including S-nitrosothiols) as well as non protein thiols. Proteins from the apoplast were resolved as 109 spots on the 2-D gel, while S-nitrosoglutathione-treated (a NO donor), neutravidin-agarose affinity chromatography-purified S-nitrosylated proteins were resolved as 52 spots. Functional categorization after MALDI-TOF/TOF identification showed 41 and 38% targets to be metabolic/cell-wall-modifying and stress-related, respectively, suggesting the potential role(s) of S-nitrosylation in regulating these responses. Additionally, identification of cold-stress-modulated putative S-nitrosylated proteins by nLC-MS/MS showed that only 38.4% targets with increased S-nitrosylation were secreted by classical pathway, while the majority (61.6%) of these were secreted by unknown/nonclassical pathways. Cold-stress-increased dehydroascorbate reductase and glutathione S-transferase activity via S-nitrosylation and promoted ROS detoxification by ascorbate regeneration and hydrogen peroxide detoxification. Taken together, cold-mediated NO production, thiol pool enrichment, and identification of the 48 putative S-nitrosylated proteins, including 25 novel targets, provided the preview of RNS-mediated cold-stress signaling in the apoplast.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available