4.7 Review

Molecular Insights into Resistance Mechanisms of Lepidopteran Insect Pests against Toxicants

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 12, Issue 11, Pages 4727-4737

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr400642p

Keywords

Lepidoptera; insect-pests; proteomics; field crops; insecticide; resistance mechanisms

Funding

  1. Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi
  2. Department of Biotechnology (DBT), Government of India, New Delhi
  3. CSIR network programs in XII plan [BSC0107, BSC0120]

Ask authors/readers for more resources

Insect pests remain a major reason for crop loss worldwide despite extensive use of chemical insecticides. More than B 50% of all insecticides are organophosphates, followed by synthetic pyrethroids, organochlorines, carbamates, and biopesticides, and their continued use may have many environmental, agricultural, medical, and socioeconomic issues. Importantly, only a countable number of insects have acquired the status of crop pests, mostly due to monoculture of crop plants and polyphagous nature of the insects. We focus on A adaptations of Lepidopteran insects to phytochemicals and synthetic pesticides in native and modern agricultural systems. Because of heavy use of chemical insecticides, a strong selection pressure is imposed on insect populations, resulting in the emergence of resistance against candidate compound(s). Current knowledge suggests that insects generally implement a three-tier system to overcome the effect of toxic compounds at physiological, biochemical, and genetic levels. Furthermore, we have discussed whether the adaptation to phytochemicals provides an advantage to the insect while encountering synthetic insecticide molecules. Specific metabolic pathways employed by insects to convert deterrents into less toxic forms or their removal from the system are highlighted. Using the proteomics approach, insect proteins interacting with insecticides can be identified, and their modification in resistant insects can be characterized. Also, systems biology studies can offer useful cues to decipher the molecular networks participating in the metabolism of detrimental compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available