4.8 Article

MgH2 dehydrogenation properties improved by MnFe2O4 nanoparticles

Journal

JOURNAL OF POWER SOURCES
Volume 239, Issue -, Pages 201-206

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2013.03.096

Keywords

Manganese ferrite; Hydrogen storage; Magnesium hydride; Dehydrogenation temperature; Apparent activation energy

Funding

  1. National High-Tech R&D Program (863 Program) of China [2006AA05Z132]
  2. China Scholarship Council
  3. National Science Foundation

Ask authors/readers for more resources

The catalytic effects of MnFe2O4 nanoparticles on the dehydrogenation properties of MgH2, prepared by ball milling, are investigated for the first time. The onset dehydrogenation temperature for MgH2 + 7 mol % MnFe2O4 is 300 degrees C, 140 degrees C lower, compared with the as-received MgH2. The isothermal dehydriding kinetics shows that 7 mol% MnFe2O4-doped sample can release 5.05 wt.% hydrogen in 1 h at 300 degrees C under 0.1 MPa pressure, whereas as-received MgH2 releases only 0.49 wt.% hydrogen for the same conditions, indicating significantly improved dehydrogenation. From the differential scanning calorimetry and the Kissinger desorption kinetics analysis, the apparent activation energy of 7 mol% MnFe2O4-doped sample is 64.55 kJ mol(-1), resulting in 190.34 kJ mol(-1) decrease, compared with the as-received MgH2, which is lower than that of MgH2 doped with other reported transition metal oxide catalysts. Based on X-ray diffraction and X-ray photoelectron spectroscopy tests, Mg2MnO4 and Fe0.872O phases together play a synergistic role in remarkably improving MgH2 dehydriding properties. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Ceramics

The quantitative investigation of the lattice oxygen and grain edge oxygen on the thermal conductivity of aluminum nitride ceramics

Zhirui Zhang, Haoyang Wu, Shutao Zhang, Yuelong Wang, Yiming Zhang, Chang Liu, Deyin Zhang, Baorui Jia, Dengshuai Guo, Aimin Chu, Xuanhui Qu, Mingli Qin

Summary: This study investigates the influence of oxygen impurities at different locations, such as lattice oxygen and grain edge oxygen, on the thermal resistivity of AlN ceramics. The results show that lattice oxygen is the main factor, and high-temperature annealing and pre-sintering can reduce the lattice oxygen content. The volume fraction of grain edge phase has little effect on thermal resistivity.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2023)

Article Polymer Science

Mullins effect in polymer large deformation strain gauges

Alexander P. Kondratov, Anastasiya V. Lozitskaya, Vyacheslav N. Samokhin, Alex A. Volinsky

Summary: This study investigates the possibility of producing strain gauges with high sensitivity to mechanical stress using hard elastic films of isotactic polypropylene. The films exhibit thixotropic polymer softening during cyclic deformation (Patrikeev-Mullins effect) and the dry crazing effect. Three methods for preparing rigid elastic films using isotactic polypropylene are proposed, involving the deposition of an adhesive layer and an electrically conductive layer. The optimal manufacturing process for electrical sensors with high sensitivity is determined, including pre-cyclic deformation to form open micropores. A mathematical model is developed to predict the mechanical stress and/or the change in mechanical stress of the strain gauges based on the electrical resistance change in the conductive layer, with up to 700 relative strain sensitivity in the range of 6-35% strain.

JOURNAL OF POLYMER RESEARCH (2023)

Article Engineering, Manufacturing

Plasticity of Porous NiTi Alloys Obtained by Self-propagating High-temperature Synthesis in Closed and Open Gas Flow Reactors

Ekaterina S. Marchenko, Yuri F. Yasenchuk, Oibek Mamazakirov, Anatoly A. Klopotov, Gulsharat A. Baigonakova, Alex A. Volinsky, Sergey V. Gunter

Summary: Porous NiTi alloys with improved mechanical properties were obtained by self-propagating high-temperature synthesis (SHS) method in a closed reactor, using layer-by-layer combustion under a protective argon atmosphere. The maximum compressive strain of the porous NiTi alloys synthesized in the closed reactor was 34%, compared to 7% in the open gas flow reactor. The reaction products in the two-phase gas zone of peritectic crystallization were isolated Ti2Ni crystalline clusters in the TiNi matrix, as confirmed by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, energy dispersive spectroscopy, and optical microscopy.

MATERIALS AND MANUFACTURING PROCESSES (2023)

Review Materials Science, Multidisciplinary

Microstructure and hot deformation behavior of the Cu-Sn-Ni-Zn-Ti (-Y) alloy

Deye Xu, Meng Zhou, Yi Zhang, Shunlong Tang, Zhiyang Zhang, Yong Liu, Baohong Tian, Xu Li, Yanlin Jia, Alex A. Volinsky, De Li, Qiujie Liu

Summary: The effects of Y addition on microstructure evolution in Cu-Sn-Ni-Zn-Ti alloys during hot deformation were investigated. Hot deformation experiments were conducted using a Gleeble-1500 simulator, deforming Cu-Sn-Ni-Zn-Ti and Cu-Sn-Ni-Zn-Ti-Y alloys at temperatures ranging from 550 to 950 degrees C and strain rates of 0.001-10 s-1. Constitutive equations were constructed and the hot deformation activation energy of the two alloys was calculated. It was found that the addition of 0.1 wt% rare earth Y element can promote dynamic recrystallization based on analysis of true stress-strain curves and electron backscattered diffraction images. Pole figures showed a texture change from {011}(112) Brass texture and {001}(100) Cube texture to {111}(211) R texture after Y addition. The microstructure and precipitates of the Cu-Sn-Ni-Zn-Ti alloy were analyzed, revealing the presence of Cu4Ti precipitates. Continuous dynamic recrystallization and discontinuous dynamic recrystallization were identified as the main recrystallization mechanisms in the Cu-Sn-Ni-Zn-Ti alloy.

MATERIALS CHARACTERIZATION (2023)

Article Chemistry, Physical

Unexpectedly High Cycling Stability Induced by a High Charge Cut-Off Voltage of Layered Sodium Oxide Cathodes

Qiuyu Shen, Yongchang Liu, Xudong Zhao, Junteng Jin, Xiaobai Song, Yao Wang, Xuanhui Qu, Lifang Jiao

Summary: Initiating anionic redox chemistry in layered sodium oxide cathodes is a prevalent method to break the capacity limit set by traditional transition metal redox. This study uncovers a Mn activation mechanism in a novel P2-Na0.80Li0.08Ni0.22Mn0.67O2 cathode, which achieves high discharge capacity and long cycling life by triggering anionic redox and reducing Mn through oxygen loss. The work elucidates the charge compensation mechanism and expands the horizons of oxygen redox chemistry for high-performance layered oxide cathode materials in sodium-ion batteries.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Multidisciplinary

Unveiling the Anionic Redox Chemistry in Phosphate Cathodes for Sodium-Ion Batteries

Xiayan Jian, Qiuyu Shen, Xudong Zhao, Junteng Jin, Yao Wang, Shengwei Li, Xuanhui Qu, Lifang Jiao, Yongchang Liu

Summary: This study reports a new type of ultrathin VOPO4 nanosheets as cathodes for sodium-ion batteries, achieving higher capacity and rate performance through redox reactions and ClO4- insertion/extraction. The mechanism of anionic redox reactions is elucidated, opening up a new avenue for high-energy phosphate cathodes for SIBs.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Ductility deterioration induced by L21 phase in ferritic alloy through Ti addition

Xu Chen, Shaowen Peng, Ye Liu, Song Bai, Lin Zhang, Shuang He, Oleg I. Gorbatov, Xuanhui Qu

Summary: Ductility deterioration induced by L21-Ni2AlTi precipitates in aged ferritic alloys was systematically examined using scanning transmission electron microscopy, mechanical tests, and first-principles thermodynamic calculations. Experimental studies showed that the presence of B2-NiAl and L21-Ni2AlTi precipitates in the alloy resulted in higher strength and hardness compared to the alloy with only NiAl precipitates, but a significant decrease in elongation-to-failure, indicating obvious ductility deterioration. Theoretical analysis revealed the intrinsic brittleness of L21-Ni2AlTi phase and L21-Ni2AlTi/BCC-Fe interface.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Materials Science, Multidisciplinary

Cu/oriented-carbon nanotubes composite with ultralow thermal contact resistance

Zunyue Yu, Jianguo Huang, Chenglong Xiao, Wenru Zhao, Beibei Zhang, Shubin Ren, Xuanhui Qu

Summary: In this paper, a simple material preparation method is proposed to meet the requirements of efficient heat exchange interface materials for spacecraft on-orbit modular assembly. Carbon nanotubes (CNTs) were dispersed on the surface of spherical copper (Cu) powder, and then the bulk was obtained by hot-pressing sintering. By removing the Cu on the surface, the CNTs can protrude from the surface to fill the pores at the interface, increasing the heat transfer channel and reducing the thermal contact resistance (TCR).

MATERIALS TODAY COMMUNICATIONS (2023)

Article Materials Science, Ceramics

Two-step pressureless sintering of ultrafine powders for the preparation of high strength and transmittance AlON ceramics

Yiming Zhang, Haoyang Wu, Zhirui Zhang, Tao Li, Huifeng Lu, Qing He, Yuelong Wang, Baorui Jia, Siyong Gu, Xuanhui Qu, Mingli Qin

Summary: This paper reported a low + high temperature two-step sintering method using ultrafine AlON powders to prepare high-strength and high-transmittance AlON ceramics. The method achieved a sample with 97% density and small grain size, and increasing the sintering temperature further eliminated the porosity and realized high optical transmission and flexural strength.

CERAMICS INTERNATIONAL (2023)

Article Materials Science, Ceramics

Synthesis of hollow spherical WO3 powder by spray solution combustion and its photocatalytic properties

Yadong Liu, Saipeng Cao, Haoyang Wu, Lin Zhang, Baorui Jia, Mingli Qin, Xuanhui Qu

Summary: Hollow spherical WO3 powder was successfully synthesized via spray solution combustion synthesis (SSCS) method using a mixed solution of ammonium metatungstate, glycine and ammonium nitrate. The effects of fuel ratio, temperature, and precursor solution concentration on the structure and morphology of the powder were investigated, as well as the SSCS mechanism. The optimized conditions resulted in the formation of smooth-surfaced spherical WO3 powder with a median diameter of 24.02 μm, consisting of nanoparticles with a diameter of about 30 nm and a specific surface area of 13.5 m2/g. The as-synthesized WO3 powder exhibited excellent catalytic performance in degrading RhB solution under visible light, with 70.1% degradation achieved within 2 hours using only 10 mg of powder.

CERAMICS INTERNATIONAL (2023)

Review Materials Science, Multidisciplinary

Design of high-performance molybdenum alloys via doping metal oxide and carbide strengthening: A review

Hairui Xing, Ping Hu, Chaojun He, Xiangyang Zhang, Jiayu Han, Fan Yang, Run Bai, Wen Zhang, Kuaishe Wang, Alex A. Volinsky

Summary: This paper reviews the methods of strengthening molybdenum alloys with metal oxides and carbides and their effects on alloy structure and properties, providing guidance for the design of high-performance refractory molybdenum alloys.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Effect of lithium anti-ablation and grain refinement introduced by TiC nanoparticles in LPBF Al-Li alloy

Jin'e Sun, Yaojie Wen, Zhong Wang, Jingguo Zhang, Linshan Wang, Xuanhui Qu, Baicheng Zhang

Summary: In this study, a TiC nanoparticle modified Al-Mg-Li alloy is developed for laser powder bed fusion (LPBF) process. The presence of TiC nanoparticles effectively increases the viscosity of the alloy liquid, preventing Li element ablation and promoting grain refinement. The addition of TiC nanoparticles leads to an outstanding mechanical property with high ultimate tensile strength and elongation.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Materials Science, Multidisciplinary

Achieving synergy of strength and ductility in powder metallurgy commercially pure titanium by a unique oxygen scavenger

Yu Pan, Yucheng Yang, Qingjun Zhou, Xuanhui Qu, Peng Cao, Xin Lu

Summary: By adding a minor CaC2 oxygen-scavenger, the excessive interstitial oxygen contamination in titanium and its alloys can be effectively solved, resulting in high strength and superior ductility. This novel method offers a cost-effective way to develop high-performance titanium materials.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Site preference and elastic properties of L21-Ni2TiAl doped with refractory metal elements from first principles

Shuyi Xie, Bin Xu, Cong Zhang, Dil Faraz Khan, Xue Jiang, Ruijie Zhang, Yongwei Wang, Haiqing Yin, Xuanhui Qu

Summary: This study investigates the effects of doping 7 refractory elements (V, Cr, Zr, Nb, Mo, Hf, and Ta) on the site preference, elastic properties, and bonding effect of Ni2TiAl. The results show that V and Cr can effectively improve the bonding stability and strength of Ni2TiAl.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Synergistic improvement of strength and ductility via doping cerium into PH13-8Mo stainless steel by laser powder b e d fusion

Chang Liu, Jianxiong Liang, Changjun Wang, Gang Chen, Xuanhui Qu, Yu Liu, Zhenbao Liu, Mengxing Zhang

Summary: In this study, PH13-8Mo stainless steel parts doped with cerium were fabricated and compared with undoped parts. The doping of cerium improved the microstructure, phase constituents, and tensile properties of the stainless steel. The results showed that doping with cerium enhanced the mechanical stability of austenite, improved the sphericity of oxide inclusion, and increased the ultimate tensile strength and fracture elongation of the PH13-8Mo parts. The improved strength and ductility were attributed to the strengthening effects of nanoscale precipitation and grain refining, as well as the enhanced inclusion sphericity and coherency between the inclusion and matrix.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Chemistry, Physical

Development of a tubular direct carbon solid oxide fuel cell stack based on lanthanum gallate electrolyte

Tianyu Chen, Zhibin Lu, Guangjin Zeng, Yongmin Xie, Jie Xiao, Zhifeng Xu

Summary: The study introduces a high-performance LSGM electrolyte-supported tubular DC-SOFC stack for portable applications, which shows great potential in developing into high-performing, efficient, and environmentally friendly portable power sources for distributed applications.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Construction of ultrastable and high-rate performance zinc anode with three-dimensional porous structure and Schottky contact

Wenbin Tong, Yili Chen, Shijie Gong, Shaokun Zhu, Jie Tian, Jiaqian Qin, Wenyong Chen, Shuanghong Chen

Summary: In this study, a three-dimensional porous NiO interface layer with enhanced anode dynamics is fabricated, forming a Schottky contact with the zinc substrate, allowing rapid and uniform zinc plating both inside and below the interface layer. The resulting NiO@Zn exhibits exceptional stability and high capacity retention.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Flexible low-temperature zinc ion supercapacitor based on gel electrolyte with α-MnO2@rGO electrode

Yafeng Bai, Kaidi Li, Liying Wang, Yang Gao, Xuesong Li, Xijia Yang, Wei Lu

Summary: In this study, a flexible zinc ion supercapacitor with gel electrolytes, porous alpha-MnO2@reduced graphene oxide cathode, and activated carbon/carbon cloth anode was developed. The device exhibits excellent electrochemical performance and stability, even at low temperatures, with a high cycle retention rate after 5000 cycles.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Examining the effects of silicon based additives on the long-term cycling capabilities of cylindrical cells

Anmol Jnawali, Matt D. R. Kok, Francesco Iacoviello, Daniel J. L. Brett, Paul R. Shearing

Summary: This article presents the results of a systematic study on the electrochemical performance and mechanical changes in two types of commercial batteries with different anode chemistry. The study reveals that the swelling of anode layers in batteries with silicon-based components causes deformations in the jelly roll structure, but the presence of a small percentage of silicon does not significantly impact the cycling performance of the cells within the relevant state-of-health range for electric vehicles (EVs). The research suggests that there is room for improving the cell capacities by increasing the silicon loading in composite anodes to meet the increasing demands on EVs.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Lithium disilicate as an alternative silicate battery material. A theoretical study

Yohandys A. Zulueta, My Phuong Pham-Ho, Minh Tho Nguyen

Summary: Advanced atomistic simulations were used to study ion transport in the Na- and K-doped lithium disilicate Li2Si2O5. The results showed that Na and K doping significantly enhanced Li ion diffusion and conduction in the material.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Novel BaO-decorated carbon-tolerant Ni-YSZ anode fabricated by an efficient phase inversion-impregnation approach

Zongying Han, Hui Dong, Yanru Yang, Hao Yu, Zhibin Yang

Summary: An efficient phase inversion-impregnation approach is developed to fabricate BaO-decorated Ni8 mol% YSZ anode-supported tubular solid oxide fuel cells (SOFCs) with anti-coking properties. BaO nanoislands are successfully introduced inside the Ni-YSZ anode, leading to higher peak power densities and improved stability in methane fuel. Density functional theory calculations suggest that the loading of BaO nanoislands facilitates carbon elimination by capturing and dissociating H2O molecules to generate OH.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Safe and stable Li-CO2 battery with metal-organic framework derived cathode composite and solid electrolyte

Suresh Mamidi, Dan Na, Baeksang Yoon, Henu Sharma, Anil D. Pathak, Kisor Kumar Sahu, Dae Young Lee, Cheul-Ro Lee, Inseok Seo

Summary: Li-CO2 batteries, which utilize CO2 and have a high energy density, are hindered in practical applications due to slow kinetics and safety hazards. This study introduces a stable and highly conductive ceramic-based solid electrolyte and a metal-organic framework catalyst to improve the safety and performance of Li-CO2 batteries. The optimized Li-CO2 cell shows outstanding specific capacity and cycle life, and the post-cycling analysis reveals the degradation mechanism of the electrodes. First-principles calculations based on density functional theory are also performed to understand the interactions between the catalyst and the host electrode. This research demonstrates the potential of MOF cathode catalyst for stable operation in Li-CO2 batteries.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Synergistic effect of platinum single atoms and nanoclusters for preferential oxidation of carbon monoxide in hydrogen-rich stream

Ganghua Xiang, Zhihuan Qiu, Huilong Fei, Zhigang Liu, Shuangfeng Yin, Yuen Wu

Summary: In this study, a CeFeOx-supported Pt single atoms and subnanometric clusters catalyst was developed, which exhibits enhanced catalytic activity and stability for the preferential oxidation of CO in H2-rich stream through synergistic effect.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Towards understanding the functional mechanism and synergistic effects of LiMn2O4-LiNi0.5Mn0.3Co0.2O2 blended positive electrodes for Lithium-ion batteries

Dimitrios Chatzogiannakis, Marcus Fehse, Maria Angeles Cabanero, Natalia Romano, Ashley Black, Damien Saurel, M. Rosa Palacin, Montse Casas-Cabanas

Summary: By coupling electrochemical testing to operando synchrotron based X-ray absorption and powder diffraction experiments, blended positive electrodes consisting of LiMn2O4 spinel (LMO) and layered LiNi0.5Mn0.3Co0.2O2 (NMC) were studied to understand their redox mechanism. It was found that blending NMC with LMO can enhance energy density at high rates, with the blend containing 25% LMO showing the best performance. Testing with a special electrochemical setup revealed that the effective current load on each blend component can vary significantly from the nominal rate and also changes with SoC. Operando studies allowed monitoring of the oxidation state evolution and changes in crystal structure, in line with the expected behavior of individual components considering their electrochemical current loads.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

We may be underestimating the power capabilities of lithium-ion capacitors

Chiara Cementon, Daniel Dewar, Thrinathreddy Ramireddy, Michael Brennan, Alexey M. Glushenkov

Summary: This Perspective discusses the specific power and power density of lithium-ion capacitors, highlighting the fact that their power characteristics are often underestimated. Through analysis, it is found that lithium-ion capacitors can usually achieve power densities superior to electrochemical supercapacitors, making them excellent alternatives to supercapacitors.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Highly concentrated solvation structure for reversible high-voltage lithium-ion battery at low temperature

Weihao Wang, Hao Yu, Li Ma, Youquan Zhang, Yuejiao Chen, Libao Chen, Guichao Kuang, Liangjun Zhou, Weifeng Wei

Summary: This study achieved an improved electrolyte with excellent low-temperature and high-voltage performance by regulating the Li+ solvation structure and highly concentrating it. The electrolyte exhibited outstanding oxidation potential and high ionic conductivity under low temperature and high voltage conditions, providing a promising approach for the practical application of high-voltage LIBs.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Evaluation of mitigation of capacity decay in vanadium redox flow batteries for cation- and anion-exchange membrane by validated mathematical modelling

Martin Bures, Dan Gotz, Jiri Charvat, Milos Svoboda, Jaromir Pocedic, Juraj Kosek, Alexandr Zubov, Petr Mazur

Summary: Vanadium redox flow battery is a promising energy storage solution with long-term durability, non-flammability, and high overall efficiency. Researchers have developed a mathematical model to simulate the charge-discharge cycling of the battery, and found that hydraulic connection of electrolyte tanks is the most effective strategy to reduce capacity losses, achieving a 69% reduction.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Operando analysis of the positive active mass of lead batteries by neutron diffraction

M. Rodriguez-Gomez, J. Campo, A. Orera, F. de La Fuente, J. Valenciano, H. Fricke, D. S. Hussey, Y. Chen, D. Yu, K. An, A. Larrea

Summary: In this study, we analysed the operando performance of industrial lead cells using neutron diffraction experiments. The experiments revealed the evolution of different phases in the positive electrode, showed significant inhomogeneity of phase distribution inside the electrode, and estimated the energy efficiency of the cells.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Double Conductive Ni-pads for a kW-class micro-tubular solid oxide fuel cell stack

Jiawei Liu, Chenpeng Wang, Yue Yao, Hao Ye, Yinglong Liu, Yingli Liu, Xiaoru Xu, Zhicong Chen, Huazheng Yang, Gang Wu, Libin Lei, Chao Wang, Bo Liang

Summary: The study focuses on utilizing double conductive Ni-pads as anode collectors in micro-tubular solid oxide fuel cells. The simulation results show excellent performance and stability of DCNPs, and also highlight the potential applications in various fields.

JOURNAL OF POWER SOURCES (2024)

Article Chemistry, Physical

Ion transport regulation of polyimide separator for safe and durable Li-metal battery

Yang Wang, Kangjie Zhou, Lang Cui, Jiabing Mei, Shengnan Li, Le Li, Wei Fan, Longsheng Zhang, Tianxi Liu

Summary: This study presents a polyimide sandwiched separator (s-PIF) for improving the cycling stability of Li-metal batteries. The s-PIF separator exhibits superior mechanical property, electrolyte adsorption/retention and ion conductivity, and enables dendrite-free Li plating/stripping process.

JOURNAL OF POWER SOURCES (2024)