4.7 Article

The effects of viscosity on the undulatory swimming dynamics of C. elegans

Journal

PHYSICS OF FLUIDS
Volume 27, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4931795

Keywords

-

Funding

  1. Natural Science and Engineering Research Council of Canada

Ask authors/readers for more resources

The undulatory swimming dynamics of the millimetric nematode Caenorhabditis elegans was investigated in fluids with different viscosities. The technique of micropipette deflection was used to directly measure the drag forces experienced by the swimming worm in both the lateral and propulsive directions. Gait modulation due to increasing viscosity in our tethered system was found to be qualitatively similar to that of freely swimming worms. Resistive force theory was used to determine the drag coefficients of the slender swimmer, and the experimental values were compared to the classical theories of Lighthill as well as Gray and Hancock. The gait modulation was shown to be independent of how the environmental resistance is changed, indicating the relevance of only the fluid resistance on the swimming kinematics and dynamics of the nematode. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available