4.2 Article

Comparing the performance of electrospun and cast nanocomposite film of polyamide-6 reinforced with multi-wall carbon nanotubes

Journal

JOURNAL OF PLASTIC FILM & SHEETING
Volume 35, Issue 1, Pages 45-64

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/8756087918794229

Keywords

Nanofibrous film; cast film; multi-wall carbon nanotubes; crystallinity; wettability; electrical conductivity; tensile properties

Ask authors/readers for more resources

This study aims at fabrication and characterization of two different structures of electrically conductive polyamide 6/multi-wall carbon nanotube nanocomposite films at different multi-wall carbon nanotube concentrations including electrospun nanofibrous and cast films. Morphology, embedded multi-wall carbon nanotubes into nanofiber, thermal behavior, electrical conductivity and wettability of films were characterized. Scanning electron microscopy images depicted that the nanofiber diameter decreased with increased nanofillers. Enhancement of crystallinity, electrical and tensile properties, and simultaneously achieving a low percolation threshold confirmed good nanotube dispersion by employing a polymeric emulsifier, polyvinylpyrrolidone. The electrospun film crystalline content increased 18.5% and the cast ones increased 46.8% at 7 wt.% multi-wall carbon nanotubes loading. The electrospun and cast membrane electrical conductivity increased by 10 and 12 orders of magnitude. These results demonstrated higher values compared to previously reported data for polyamide 6/multi-wall carbon nanotube nanocomposites. The electrospun film Young's modulus increased 93% and that of casted one increased 267%, due to the increased crystallinity after adding carbon nanotubes into the films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available