4.3 Article

Virus infection of Haptolina ericina and Phaeocystis pouchetii implicates evolutionary conservation of programmed cell death induction in marine haptophyte-virus interactions

Journal

JOURNAL OF PLANKTON RESEARCH
Volume 36, Issue 4, Pages 943-955

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/plankt/fbu029

Keywords

caspase; DNA fragmentation; IETD; Phycodnaviridae; z-VAD-fmk; haptophyte

Funding

  1. Norwegian Research Council [186142, 190307]
  2. European Research Council Advanced Grant Microbial Network Organisation (MINOS) [ERC-AG-LS8, 250254]
  3. Norwegian Research Council
  4. United States National Science Foundation [OCE-1061883]
  5. Bergen Open Research Archive (BORA) through the University of Bergen Library
  6. Directorate For Geosciences
  7. Division Of Ocean Sciences [1061883] Funding Source: National Science Foundation

Ask authors/readers for more resources

The mechanisms by which phytoplankton cope with stressors in the marine environment are neither fully characterized nor understood. As viruses are the most abundant entities in the global ocean and represent a strong top-down regulator of phytoplankton abundance and diversity, we sought to characterize the cellular response of two marine haptophytes to virus infection in order to gain more knowledge about the nature and diversity of microalgal responses to this chronic biotic stressor. We infected laboratory cultures of the haptophytes Haptolina ericina and Phaeocystis pouchetii with CeV-01B or PpV-01B dsDNA viruses, respectively, and assessed the extent to which host cellular responses resemble programmed cell death (PCD) through the activation of diagnostic molecular and biochemical markers. Pronounced DNA fragmentation and activation of cysteine aspartate-specific proteases (caspases) were only detected in virus-infected cultures of these phytoplankton. Inhibition of host caspase activity by addition of the pan-caspase inhibitor z-VAD-fmk did not impair virus production in either host-virus system, differentiating it from the Emiliania huxleyi-Coccolithovirus model of haptophyte-virus interactions. Nonetheless, our findings point to a general conservation of PCD-like activation during virus infection in ecologically diverse haptophytes, with the subtle heterogeneity of cell death biochemical responses possibly exerting differential regulation on phytoplankton abundance and diversity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available