4.6 Article

Agonist- and antagonist-induced conformational changes of loop F and their contributions to the rho 1 GABA receptor function

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 587, Issue 1, Pages 139-153

Publisher

WILEY
DOI: 10.1113/jphysiol.2008.160093

Keywords

-

Funding

  1. Arizona Biological Research Commission [ABRC0702]
  2. Barrow Neurological Foundation

Ask authors/readers for more resources

Binding of gamma-aminobutyric acid (GABA) to its receptor initiates a conformational change to open the channel, but the mechanism of the channel activation is not well understood. To this end, we scanned loop F (K210-F227) in the N-terminal domain of the rho 1 GABA receptor expressed in Xenopus oocytes using a site-specific fluorescence technique. We detected GABA-induced fluorescence changes at six positions (K210, K211, L216, K217, T218 and I222). At these positions the fluorescence changes were dose dependent and highly correlated to the current dose-response, but with lower Hill coefficients. The competitive antagonist 3-aminopropyl(methyl)phosphinic acid (3-APMPA) induced fluorescence changes in the same direction at the four middle or lower positions. The non-competitive antagonist picrotoxin blocked nearly 50% of GABA-induced fluorescence changes at T218 and I222, but only < 20% at K210 and K217 and 0% at K211 and L216 positions. Interestingly, the picrotoxin-blocked fraction of the GABA-induced fluorescence changes was highly correlated to the Hill coefficient of the GABA-induced dose-dependent fluorescence change. The PTX-insensitive mutant L216C exhibited the lowest Hill coefficient, similar to that in binding. Thus, the PTX-sensitive fraction reflects the conformational change related to channel gating, whereas the PTX-insensitive fraction represents a binding effect. The binding effect is further supported by the picrotoxin resistance of a competitive antagonist-induced fluorescence change. A cysteine accessibility test further confirmed that L216C and K217C partially line the binding pocket, and I222C became more exposed by GABA. Our results are consistent with a mechanism that an outward movement of the lower part of loop F is coupled to the channel activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available