4.5 Article

Evolution of magnetic properties in the normal spinel solid solution Mg1-xCuxCr2O4

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 24, Issue 4, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/24/4/046003

Keywords

-

Funding

  1. National Science Foundation through a Materials World Network [DMR 0909180]
  2. Schlumberger Foundation Faculty
  3. Materials Research Laboratory
  4. NSF [DMR 1121053]
  5. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

Ask authors/readers for more resources

We examine the evolution of magnetic properties in the normal spinel oxides Mg1-xCuxCr2O4 using magnetization and heat capacity measurements. The end-member compounds of the solid solution series have been studied in some detail because of their very interesting magnetic behavior. MgCr2O4 is a highly frustrated system that undergoes a first-order structural transition at its antiferromagnetic ordering temperature. CuCr2O4 is tetragonal at room temperature as a result of Jahn-Teller active tetrahedral Cu2+ and undergoes a magnetic transition at 135 K. Substitution of magnetic cations for diamagnetic Mg2+ on the tetrahedral A site in the compositional series Mg1-xCuxCr2O4 dramatically affects magnetic behavior. In the composition range 0 <= x <= approximate to 0.3, the compounds are antiferromagnetic. A sharp peak observed at 12.5 K in the heat capacity of MgCr2O4 corresponding to a magnetically driven first-order structural transition is suppressed even for small x. Uncompensated magnetism-with open magnetization loops-develops for samples in the x range approximate to 0.43 <= x <= 1. Multiple magnetic ordering temperatures and large coercive fields emerge in the intermediate composition range 0 : 43 <= x <= 0.47. The Neel temperature increases with increasing x across the series while the value of the Curie-Weiss (CW)-C-Theta decreases. A magnetic temperature-composition phase diagram of the solid solution series is presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available