4.6 Article

A nonlinear electromechanical coupling model for electropore expansion in cell electroporation

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 47, Issue 44, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/0022-3727/47/44/445401

Keywords

electroporation; electromechanical coupling; hydrophobic-hydrophilic transition; edge energy; strain energy

Funding

  1. Hubei Natural Science Foundation [2012FFB04701]
  2. Wuhan Science and Technology Bureau [2013010501 010145]
  3. Hong Kong RGC GRF Grant [16205314]

Ask authors/readers for more resources

Under an electric field, the electric tractions acting on a cell membrane containing a pore-nucleus are investigated by using a nonlinear electromechanical coupling model, in which the cell membrane is treated as a hyperelastic material. Iterations between the electric field and the structure field are performed to reveal the electrical forces exerting on the pore region and the subsequent pore expansion process. An explicit exponential decay of the membrane's edge energy as a function of pore radius is defined for a hydrophilic pore and the transition energy as a hydrophobic pore converts to a hydrophilic pore during the initial stage of pore formation is investigated. It is found that the edge energy for the creation of an electropore edge plays an important role at the atomistic scale and it determines the hydrophobic-hydrophilic transition energy barrier. Various free energy evolution paths are exhibited, depending on the applied electric field, which provides further insight towards the electroporation (EP) phenomenon. In comparison with previous EP models, the proposed model has the ability to predict the metastable point on the free energy curve that is relevant to the lipid ion channel. In addition, the proposed model can also predict the critical transmembrane potential for the activation of an effective electroporation that is in a good agreement with previously published experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available