4.6 Article

Heating effects of a non-equilibrium RF corona discharge in atmospheric air

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 43, Issue 49, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/43/49/495204

Keywords

-

Ask authors/readers for more resources

Electrical and thermal properties of a single electrode configuration corona discharge generated under radiofrequency high voltage inside an open air gap at pressures above 1 bar is investigated. Time-resolved imaging of the discharge shows a four-step development of the discharge at atmospheric pressure starting by streamers' inception and propagation, evolving in heating waves and stabilizing in a stationary regime until the power supply is switched off. The mean gas temperature reaches about 1700 K in tens of microseconds with electrical energy release around tens of millijoules. Heating has been attributed to ion collisions and excited species relaxation, promoted by the successive time periods of the power supply. At higher pressures, beyond 3 bar, this behaviour changes and heating occurs at the same time as the discharge propagates. It leads to hot channels which constrict near the electrode as long as the voltage pulse is applied. Temperature gets higher and saturates at 2600 K whatever the voltage and the pressure. Considering the change in the electrical energy density released within the plasma channels with pressure and voltage, temperature saturation seems to be an effect of heat confining within the channels due to pressure. The large and non-thermal plasma generated by the RF corona discharge is a very good candidate for car engine lean mixtures ignition issues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available