4.6 Article

Hydrophilic and optical properties of nanostructured titania prepared by sol-gel dip coating

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 43, Issue 9, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/43/9/095301

Keywords

-

Funding

  1. Regione Puglia (Bari, Italy) [PS 074]

Ask authors/readers for more resources

Nanostructured titania thin films were prepared under controlled atmospheric conditions by the sol-gel dip-coating technique on glass, fused silica and (1 0 0)-silicon substrates. Two different sol-gel routes were employed by using different precursor solutions, a highly acid solution and a polymer-like solution. The influence of sol composition and of the substrate type on the morphology, coating porosity, surface roughness, crystalline phases and grain size of the titania films were investigated in detail. In addition, the relationship between microstructural/morphological properties and the optical properties (energy gap, refractive index and extinction coefficient) and the hydrophilic performance of the coatings were evaluated. Our experimental results clearly indicate that the sol composition and substrate type remarkably influence the films' morphology and microstructure; moreover, they consequently modify the optical response and hydrophilic performances of the samples, showing that superhydrophilic titania coatings can be obtained opportunely by choosing the composition of the precursor sol-gel solution. Blue shift of the band gap energy and a band structure mutation from indirect to direct were also revealed. The hydrophilic properties and the change in the band gaps transition can be attributed to oxygen vacancies on the surface of the titania nanocrystallites that gives rise to Ti3+ sites and, consequently, to structural changes/defects of the anatase nanoarchitecture. These findings allow us to design and tailor the optical and hydrophilic properties of the titania coatings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available