4.6 Article

Nanoconfined 2LiBH4-MgH2 Prepared by Direct Melt Infiltration into Nanoporous Materials

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 115, Issue 21, Pages 10903-10910

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp2021903

Keywords

-

Funding

  1. Alexander von Humboldt Foundation
  2. Suranaree University of Technology
  3. Danish National Research Council
  4. Danish National Research Foundation (Center for Materials Crystallography)

Ask authors/readers for more resources

Nanoconfined 2LiBH(4)-MgH2 is prepared by direct melt infiltration of bulk 2LiBH(4)-MgH2 into an inert nanoporous resorcinol-formaldehyde carbon aerogel scaffold material. Scanning electron microscopy (SEM) micrographs and energy dispersive X-ray spectroscopy (EDS) mapping reveal homogeneous dispersion of Mg (from MgH2) and B (from LiBH4) inside the carbon aerogel scaffold. Moreover, nanoconfinement of LiBH4 in the carbon aerogel scaffold is confirmed by differential scanning calorimetry (DSC). The hydrogen desorption kinetics of the nanoconfined 2LiBH(4)-MgH2 is significantly improved as compared to bulk 2LiBH(4)-MgH2. For instance, the nanoconfined 2LiBH(4)-MgH2 releases 90% of the total hydrogen storage capacity within 90 mm, whereas the bulk material releases only 34% (at T = 425 degrees C and p(H-2) = 3.4 bar). A reversible gravimetric hydrogen storage capacity of 10.8 wt % H-2, calculated with respect to the metal hydride content, is preserved over four hydrogen release and uptake cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Multidisciplinary

Reactive Hydride Composite Confined in a Polymer Matrix: New Insights into the Desorption and Absorption of Hydrogen in a Storage Material with High Cycling Stability

Clarissa Abetz, Prokopios Georgopanos, Claudio Pistidda, Thomas Klassen, Volker Abetz

Summary: Hydrogen is crucial for the transition to a sustainable future without CO2 emissions. It can be produced from renewable energy sources like solar and wind power and used to buffer energy fluctuations in all sectors. Safe and efficient storage options, such as metal hydride materials, are essential for hydrogen technology implementation.

ADVANCED MATERIALS TECHNOLOGIES (2022)

Article Chemistry, Physical

Design of a reference model for fast optimization of photo-electrochemical cells

Carmen Tenholt, Daniel Hoeche, Mauricio Schieda, Thomas Klassen

Summary: Most research on photo-electrochemical (PEC) cells for water splitting has been based on simulations and experiments on laboratory scales. This study investigates the effects of stepwise upscaling of PEC cells and develops a computer-aided reference model to predict their behavior on different scales. Machine learning via Bayesian optimization is employed to optimize the simulation model input parameters, resulting in good agreement with measured current-voltage curves.

SUSTAINABLE ENERGY & FUELS (2022)

Article Chemistry, Physical

Methylamine Magnesium Borohydrides as Electrolytes for All-Solid- State Magnesium Batteries

Torben R. Jensen, Mads B. Amdisen, Jakob B. Grinderslev, Lasse N. Skov

Summary: Solid-state magnesium electrolytes are crucial for the development of rechargeable batteries with high capacities, yet there is a lack of electrolytes that meet the requirements. In this study, six new compounds of methylamine magnesium borohydride were synthesized and their properties were investigated. One of the compounds showed a record high ionic conductivity of Mg2+ and exhibited stability towards magnesium electrodes.

CHEMISTRY OF MATERIALS (2023)

Article Chemistry, Inorganic & Nuclear

Synthesis, Structure and Mg2+ Ionic Conductivity of Isopropylamine Magnesium Borohydride

Lasse G. Kristensen, Mads B. Amdisen, Mie Andersen, Torben R. Jensen

Summary: The discovery of new inorganic magnesium electrolytes may lead to the development of novel solid-state batteries through the investigation of a new type of organic-inorganic metal hydride with hydrophobic domains. The structure of this metal hydride was determined and its properties were optimized through various methods. Nanoparticles and heat treatment were found to enhance the conductivity and stability of the composite material.

INORGANICS (2023)

Article Electrochemistry

Layered Titanium Sulfide Cathode for All-Solid-State Magnesium Batteries

Lasse N. Skov, Jakob B. Grinderslev, Torben R. Jensen

Summary: This study presents the first cathode investigation of an inorganic all-solid-state magnesium battery, using a magnesium metal anode, a nanocomposite electrolyte, and a layered titanium disulfide as the cathode active material. The structural transformations of different-sized titanium disulfide particles are studied at different stages of the battery life. The reversible magnesium intercalation occurs in three structurally distinct phases, and a maximum discharge capacity is observed for smaller titanium disulfide particles.

BATTERIES & SUPERCAPS (2023)

Article Chemistry, Inorganic & Nuclear

Destabilization of the LiBH4-NaBH4 Eutectic Mixture through Pore Confinement for Hydrogen Storage

Filippo Peru, Seyedhosein Payandeh, Torben R. Jensen, Georgia Charalambopoulou, Theodore Steriotis

Summary: A composite material of 0.71 LiBH4-0.29 NaBH4 and CMK-3 carbon with nanopores was successfully synthesized, showing improved hydrogen absorption-desorption kinetics. After five cycles, the composite maintained a consistent uptake of about 3.5 wt.% H-2. The enhanced kinetics were attributed to carbon-hydride surface interactions and the heat transfer capability of the carbon support. The nanopore confinement may also contribute to the improved reversibility.

INORGANICS (2023)

Review Materials Science, Multidisciplinary

Magnesium borohydride Mg(BH 4 ) 2 for energy applications: A review

Xiao Li, Yigang Yan, Torben R. Jensen, Yaroslav Filinchuk, Iurii Dovgaliuk, Dmitry Chernyshov, Liqing He, Yongtao Li, Hai-Wen Li

Summary: Mg(BH4)2 is a high capacity hydrogen storage material with new functions of gas physisorption and ionic conductivity. This review summarizes the recent progress on its energy related functions, including reversible hydrogen storage, gas adsorption, and electrolyte application.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Physical

Enhanced Electrochemical Performance of the Li2B12H12-Li2B10H10-LiBH4 Electrolyte

Chongyang Zhou, Yigang Yan, Torben R. Jensen

Summary: The introduction of LiBH4 into Li2B12H12-5Li(2)B(10)H(10) improves its electrochemical window to 3.0 V and Li-ion conductivity to 1.0 x 10(-4) S cm(-1) at room temperature. Moreover, the Li(2)B(12)H(12)-5Li(2)B(10)H(10)-6LiBH(4) electrolyte exhibits good compatibility with a metallic Li anode and TiS2 cathode, allowing stable operation of the all-solid-state cell for 120 cycles with high capacity and coulombic efficiency. This work demonstrates the potential of a hydroborate electrolyte for the development of high voltage all-solid-state batteries.

ACS APPLIED ENERGY MATERIALS (2023)

Article Chemistry, Physical

Hemi-methylamine lithium borohydride as electrolyte for all-solid-state batteries

Jakob B. Grinderslev, Lasse N. Skov, Torben R. Jensen

Summary: Utilization of next-generation all-solid-state lithium batteries requires new fast Li-ion conducting solid electrolytes. LiBH4-based materials have shown promising high ionic conductivity at room temperature. A new compound, hemi-methylamine lithium borohydride (LiBH4 & BULL;1/2CH(3)NH(2)), with a crystal structure consisting of two-dimensional layers, has been discovered. This compound exhibits high lithium ion conductivity and electrochemical stability, making it suitable for battery operation. However, it is incompatible with layered TiS2 cathode, limiting its full charging potential.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Physical

Influence of near-surface oxide layers on TiFe hydrogenation: mechanistic insights and implications for hydrogen storage applications

Archa Santhosh, ShinYoung Kang, Nathan Keilbart, Brandon C. Wood, Thomas Klassen, Paul Jerabek, Martin Dornheim

Summary: This study investigates the growth and nature of oxide films on the surface of TiFe intermetallic compound using first-principles methods. Different structures and temperature effects of oxide phases are studied in detail. The interaction between the oxidized surface and hydrogen is evaluated, providing important insights for the design of activation methods for TiFe and related materials as hydrogen storage materials.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Materials Science, Multidisciplinary

Developing sustainable FeTi alloys for hydrogen storage by recycling

Yuanyuan Shang, Shaofei Liu, Zhida Liang, Florian Pyczak, Zhifeng Lei, Tim Heidenreich, Alexander Schoekel, Ji-jung Kai, Gokhan Gizer, Martin Dornheim, Thomas Klassen, Claudio Pistidda

Summary: By synthesizing FeTi alloys from industrial scraps in an environmentally sustainable way, the carbon footprint associated with their production can be reduced without compromising their hydrogen storage properties.

COMMUNICATIONS MATERIALS (2022)

Review Energy & Fuels

Research and development of hydrogen carrier based solutions for hydrogen compression and storage

Martin Dornheim, Lars Baetcke, Etsuo Akiba, Jose-Ramon Ares, Tom Autrey, Jussara Barale, Marcello Baricco, Kriston Brooks, Nikolaos Chalkiadakis, Veronique Charbonnier, Steven Christensen, Jose Bellosta von Colbe, Mattia Costamagna, Erika Dematteis, Jose-Francisco Fernandez, Thomas Gennett, David Grant, Tae Wook Heo, Michael Hirscher, Katherine Hurst, Mykhaylo Lototskyy, Oliver Metz, Paola Rizzi, Kouji Sakaki, Sabrina Sartori, Emmanuel Stamatakis, Alastair Stuart, Athanasios Stubos, Gavin Walker, Colin J. Webb, Brandon Wood, Volodymyr Yartys, Emmanuel Zoulias

Summary: There has been a significant increase in industrial and public interest in hydrogen technologies recently, as hydrogen is seen as the ideal means for storing, transporting, and utilizing energy in combination with renewable and green energy sources. Green hydrogen production, storage, and usage are considered key technologies in future energy systems. Material-based systems for hydrogen storage and compression offer advantages over traditional systems, including lower maintenance costs, higher reliability, and safety. This paper summarizes the latest developments in hydrogen carriers for storage and compression and provides an overview of research activities in this field.

PROGRESS IN ENERGY (2022)

Review Energy & Fuels

Hydrogen storage in complex hydrides: past activities and new trends

Erika Michela Dematteis, Mads B. Amdisen, Tom Autrey, Jussara Barale, Mark E. Bowden, Craig E. Buckley, Young Whan Cho, Stefano Deledda, Martin Dornheim, Petra de Jongh, Jakob B. Grinderslev, Goekhan Gizer, Valerio Gulino, Bjorn C. Hauback, Michael Heere, Tae Wook Heo, Terry D. Humphries, Torben R. Jensen, Shin Young Kang, Young-Su Lee, Hai-Wen Li, Sichi Li, Kasper T. Moller, Peter Ngene, Shin-ichi Orimo, Mark Paskevicius, Marek Polanski, Shigeyuki Takagi, Liwen Wan, Brandon C. Wood, Michael Hirscher, Marcello Baricco

Summary: This review paper provides an overview of the intense literature and research efforts on complex hydrides for energy storage applications. It focuses on recent advances in different complex hydride systems from the collaborative activities of research groups led by experts of the Task 40 'Energy Storage and Conversion Based on Hydrogen' of the International Energy Agency. The paper reviews materials design, synthesis, tailoring, modelling approaches, hydrogen release and uptake mechanisms, and thermodynamic aspects to define new trends and suggest new possible applications for these highly tuneable materials.

PROGRESS IN ENERGY (2022)

Article Chemistry, Multidisciplinary

Sustainable NaAlH4 production from recycled automotive Al alloy

Yuanyuan Shang, Claudio Pistidda, Chiara Milanese, Alessandro Girella, Alexander Schokel, Thi Thu Le, Annbritt Hagenah, Oliver Metz, Thomas Klassen, Martin Dornheim

Summary: This manuscript proposes a method for obtaining high-quality NaAlH4 from automotive recycled alloy, and comprehensively explores its hydrogen storage properties using various experimental techniques. The results show that NaAlH4 with comparable properties to high-purity commercial NaAlH4 was successfully synthesized.

GREEN CHEMISTRY (2022)

No Data Available