4.6 Article

Self-Consistent Quantum Master Equation Approach to Molecular Transport

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 114, Issue 48, Pages 20362-20369

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp103369s

Keywords

-

Funding

  1. Belgian Federal Government
  2. UCSD
  3. U.S.-Israel Binational Science Foundation

Ask authors/readers for more resources

We propose a self-consistent generalized quantum master equation (GQME) to describe electron transport through molecular junctions. In a previous study [Esposito, M.; Galperin, M. Phys. Rev, B 2009, 79, 205303], we derived a time-nonlocal GQME to cure the lack of broadening effects in Redfield theory. To do so, the free evolution used in the Born-Markov approximation to close the Redfield equation was replaced by a standard Redfield evolution. In the present paper, we propose a backward Redfield evolution leading to a time-local GQME which allows for a self-consistent procedure of the GQME generator. This approach is approximate but properly reproduces the nonequilibrium steady-state density matrix and the currents of an exactly solvable model. The approach is less accurate for higher moments such as the noise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available